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The interaction of flexible structures with viscous flows is cen-
tral for a wide range of important biological and industrial 
processes, such as the swimming of flagellated microorgan-

isms1, the squeezing of red blood cells through microcapillaries2, 
mitotic spindle formation and positioning during cell division3 
or the design of soft micromechanical sensors4. In all cases, the 
dynamics and morphologies of the flexible objects subject to vis-
cous stresses underlie the observed or desired properties.

Particularly rich dynamics occur when flexible objects are 
elongated5, where complex morphologies emerge as non-uniform 
viscous stresses overcome structural rigidity. Elongated shapes not 
only lead to drag anisotropy but also result in high deformability, 
as bending rigidity is strongly dependent on geometry in addition 
to material properties. Buckling instabilities of freely transported 
flexible fibres have been predicted, simulated and experimentally 
observed in shear as well as stagnation point flows5–10 and result 
in characteristic two-dimensional (2D) buckling modes. Under 
sedimentation, flexible fibres spontaneously adopt a steady U 
shape, independent of initial conditions11. Flexible filaments can 
also be compressed into more compact, three-dimensional (3D) 
conformations under stronger forcing, and fibre coiling from 
the ends has been reported in shear12–16. However, these mor-
phologies are typically irregular and random, except for very  
specific initial conditions, where, for instance, knot formation has  
been observed17.

Here, we report on the surprising finding that a freely suspended 
straight flexible filament can buckle into a helical shape in a purely 
compressional flow. The formation of such regular 3D conforma-
tions18–21 typically requires applying end moments in addition 
to compressive forces22–24. The phenomenon discussed here thus 
stands out from classical helical buckling in that the filament spon-
taneously adopts a chiral helicoidal morphology in the absence of 
any intrinsic twist or external moments.

We elucidate this generic morphological transition through a 
combination of experiments, simulations and theoretical modelling. 
To induce and visualize buckling in experiments, we passed fluo-
rescently labelled actin filaments through a convergent–divergent 
hyperbolic microfluidic channel specially designed and optimized 
to provide uniform extension and compression rates over large dis-
tances while ensuring a long residence time for the filaments25,26. 
These experiments are complemented by two sets of very different 
simulations. In the first model, closely mimicking the experimen-
tal conditions, we performed Langevin simulations of inextensible 
Euler–Bernoulli beams placed in a 2D flow field and subject to 
thermal fluctuations14. In the second model, we simulated non-
Brownian elastic fibres composed of surface nodes connected by a 
network of springs providing structural rigidity and bending resis-
tance15,27 in an axisymmetric channel16. As shown below, both types 
of simulation, as well as seminal simulations by Chelakkot et al.28, 
recapitulate the helix formation seen in experiments, pointing to 
a very generic transition that only requires a strong compressional 
flow as we rationalize below using a nonlinear stability analysis. Our 
findings highlight a new mechanism by which a one-dimensional 
(1D) object can buckle into a chiral helicoidal shape under viscous 
loading. This mechanism remained undiscovered as typical experi-
mental setups in stagnation point flows do not allow for sufficiently 
strong compression rates or long residence times, and as past theo-
retical analyses have been limited to two dimensions. Our results 
also underscore the robustness of this phenomenon, which occurs 
independent of the presence of thermal fluctuations and across very 
different flow environments.

Strong compressional flows induce helical buckling
Typical buckling events in experiments and Brownian simulations 
are shown in Fig. 1a for increasing values of the dimensionless elas-
toviscous number μ (ref. 5), a measure of compression rate whose 
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definition we specify below. We focus here on the dynamics in the 
divergent part of a microfluidic hyperbolic channel (see Fig. 1c–e) 
where compression at constant strain rate _ϵ occurs, with the con-
vergent part mainly serving to align and prestretch the filaments 
before measurements begin. As the filaments enter the compres-
sional region (column (i)), they are indeed mostly straight, as ther-
mal shape fluctuations have been largely suppressed8. Snapshots at 
increasing values of the dimensionless time _ϵt

I
 in columns (ii) to 

(v) show the growth of deformations with distinct emergent mor-
phologies for increasing elastoviscous numbers (top to bottom). In 
relatively weak flows (first row), deformations are mostly planar and 
resemble those seen in past studies in stagnation point flows8,29,30. 
As μ is increased in subsequent rows, more complex shapes emerge 
that are fully 3D, as evidenced by the blurriness of some parts of 
the filaments in the experimental images due to deformations out 
of the focal plane. Another indicator of three-dimensionality is 
the presence of apparent kinks (orange arrows) in the 2D images, 
which must result from the projection of 3D shapes. In some cases, 
actual loops (purple arrows) can be observed and strongly hint at 
helicoidal shapes. This is confirmed in Fig. 1b, showing simulated 
Brownian filament projections in the cross-sectional plane, where 
these loops are now clearly visible. The number of loops along 
the filament increases with μ as higher unstable buckling modes 
become excited. The emerging coiled structures have no preferred 
chirality as expected from symmetry; this was tested in Brownian 
simulations, where simulations at a fixed μ produce shapes of the 

two chiralities with equal probability. In some cases, reversals in the 
handedness also occur at topological perversions along the contour 
length. As experimental observations only provide 2D projections, 
we cannot conclude on the chirality of the emerging 3D shapes. 
However, helices with perversions are also observed, leading us to 
believe that the conclusions from the Brownian simulations also 
hold in experiments and that there is no signature of the intrinsic 
chirality of the actin filaments in the 3D shapes. As the filament is 
transported downstream, the helix is further compressed by the flow 
until it exits the compressional region and is finally allowed to relax.

Simulations of a non-Brownian fibre in Fig. 2 are consistent with 
these observations and provide a cleaner picture of the buckling pro-
cess. In the absence of thermal fluctuations, deformations are typi-
cally concentrated near the centre of the filament, with the filament 
ends remaining mostly straight and aligned with the flow axis. In 
simulations at moderate flow strengths, we find that deformations 
first occur in a 2D plane before 3D effects kick in and lead to the 
helix formation. This curious sequence of events, which we eluci-
date below, disappears in very strong flows, where 3D shapes emerge 
almost instantly. As in the Brownian case, shape perversions occa-
sionally arise along the filament and cause handedness reversals22,31.

helical shapes stem from interacting planar modes
We proceed to explain the emergence of helical morphologies using 
a 3D weakly nonlinear stability analysis. Previous 2D linear analyses 
in planar flows have been very successful at predicting the onset 
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Fig. 1 | Buckling conformations of Brownian filaments in compressional flow. a, Snapshots of evolving filament morphologies from experiments and 
Brownian simulations compared at the same _ϵt, measured from the instant the filament enters the compressional region. Vertical panels correspond to 
increasing values of μ. The filament is initially extended and aligned with the centreline (i), and it starts buckling after experiencing compression. For 
sufficiently large μ, 3D shapes emerge, as evidenced by kinks and loops in the 2D projections. Also see Supplementary Videos 1–5. Parameter values 
(from top to bottom): ℓp/L = 1.5, 0.76, 0.32, 0.25; μ ¼ 2 ´ 103; 3 ´ 104; 8 ´ 105; 2 ´ 106

I
. b, Projections of simulated filament conformations corresponding 

to a(v) in the cross-sectional plane of the channel, highlighting the 3D helicoidal nature of the morphologies at large μ. c, Geometry of the optimized 
hyperbolic microfluidic channel used in experiments, with markers indicating the positions where the snapshots shown in a were taken. d,e, Axial velocity 
u and _ϵ as functions of streamwise position x along the channel centreline where filaments are transported. A constant _ϵ occurs over a given distance, and 
measurements are made in the compressional region highlighted in red.
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of buckling and subsequent mode shapes6,7,10,29. Here, we show how 
the interaction of pairs of planar eigenmodes growing in different 
planes is responsible for the observed 3D helices.

In the absence of thermal fluctuations, filament dynamics are gov-
erned by the interplay of viscous forces exerted by the flow and internal 
elasticity. This balance is quantified by μ, comparing the characteristic 
timescale for elastic relaxation of a bending mode with the timescale 
of the imposed flow14. It is defined as μ ¼ 8πμ _ϵL4=Bc

I
 in terms of the 

solvent viscosity μ, _ϵ, filament contour length L and bending rigidity B 
and shows a strong dependence on length. The constant c ¼ �lnðα2eÞ

I
 

is a dimensionless slenderness parameter where α is the filament aspect 
ratio and e is Euler’s number. When the filament is small enough to 
experience Brownian motion, the balance of fluctuations and bending 
rigidity results in a persistence length ℓp = B/kBT, where kBT is the ther-
mal energy. In this case, the ratio ℓp/L quantifies the amplitude of fluc-
tuations, with the limit of ℓp/L → ∞ describing Brownian rigid fibres. 
In past studies of viscous buckling, the role of thermal fluctuations was 
shown to be limited to triggering the instability while smoothing the 
buckling transition8,14,29. We neglect fluctuations in our theory, though 
their effect will be addressed in simulations.

In the reference frame of the translating filament, the local flow 
field is well approximated by a planar compressional flow in experi-
ments and Brownian simulations, and by a uniaxial compressional 
flow in non-Brownian simulations; we focus here on the former 
case and thus take the dimensionless flow field to be u∞ = (−x, y, 0). 
In the base state, the filament is straight with its centre at the stagna-
tion point and its axis aligned with the direction of compression: 
x0ðsÞ ¼ sx̂
I

 with s ∈ [−0.5, 0.5]. Its motion is described using local 
slender-body theory for low-Reynolds-number hydrodynamics32,

μ ð _x � u1Þ ¼ 1þ xsxsð Þ  ðTxsÞs � xssss
� �

ð1Þ

where μ appears as the sole control parameter. Here, we have assumed 
a high aspect ratio (c ≫ 1), and in this limit the friction coefficients 
in the parallel and perpendicular directions differ by a factor of 
1/2. Indices in equation (1) denote differentiation with respect to 
arclength, with xs describing the local tangent vector. The scalar T(s) 
is the internal tension that enforces filament inextensibility. Equation 
(1) is accompanied by force- and moment-free boundary conditions: 
xsss = xss = T = 0 at s = ±1/2. In the base state, the compressional flow 
induces a parabolic tension profile T0ðsÞ ¼ 1

4 μ s2 � 1
4

� �

I
 typical of 

undeformed filaments in linear flows6,7.
The straight configuration is perturbed as x(s, t) = (s, hy, hz), where 

hy(s, t) and hz(s, t) are in-plane (x, y) and out-of-plane (x, z) shape per-
turbations, respectively, and are assumed to be small OðεÞ

I
 quantities. 

We first perform a linear analysis and simplify equation (1) as

μ ð _x � u1Þ ¼ T0xss þ 2T0;sxs � xssss þOðε2Þ ð2Þ

where u∞ = (−s, hy, 0). We seek normal-mode perturbations  
of the form {hy, hz} = {Φy(s), Φz(s)}exp(σt), where Φy and Φz are  

in- and out-of-plane mode shapes and σ is the complex growth rate. 
Inserting this ansatz into equation (2) yields two eigenvalue prob-
lems in the y and z directions:

μ ðσ � 1Þ Φy ¼ L½Φy ð3Þ

μ σ Φz ¼ L½Φz ð4Þ

where L
I
 is the differential operator 

L½Φ ¼ T0ðsÞΦss þ T0;sðsÞ Φs �Φssss

I
. Inspection of equations (3) 

and (4) shows that the eigenvalue problems in the two orthogonal 
planes are uncoupled and thus have their own growth rates (σy, σz). 
Incidentally, the two eigenvalue problems are found to be identi-
cal under the transformation σz = σy − 1. This points to a key aspect 
of the eigenspectrum: for a given value of μ, in- and out-of-plane 
mode shapes are identical but have offset growth rates. The reason 
that the two eigenvalues are nearly identical is the internal tension, 
which acts to destabilize the system equally in all directions. Out-
of-plane deformations grow slightly more slowly as a consequence 
of the 2D nature of the flow; the two growth rates would be identical 
in uniaxial flow.

The eigenvalue problem of equation (3) was solved numeri-
cally using a Chebyshev spectral collocation method with bound-
ary conditions Φyss = Φysss = 0 at s = ±1/2, and pertinent results are 
summarized in Fig. 3. The growth rates Re(σy) of unstable modes 
are plotted versus μ in Fig. 3a. In very weak flows, all modes are 
stable with negative growth rates. As the elastoviscous number is 
increased, a supercritical pitchfork bifurcation occurs, giving rise 
to the first onset of buckling. In agreement with past planar analy-
ses7,29,30, the first buckling threshold is found to be μc � 153:2

I
 with 

an even mode shape (Φ(−s) = Φ(s)) resembling the canonical C 
shape typical of Euler buckling. At yet larger values of μ, higher-
order buckling modes with larger wavenumbers are excited and can 
become unstable, leading to the complex eigenspectrum of Fig. 3a. 
Three essential features stand out: (1) at large elastoviscous num-
bers, the first two eigenvalues {σy

(1), σy
(2)} dominate the spectrum and 

the corresponding eigenmodes are expected to dictate the emergent 
morphologies; (2) these two dominant eigenmodes always come in 
an odd–even pair, that is, if Φ(1) is odd then Φ(2) is even and vice 
versa; (3) the difference in growth rate between these two dominant 
modes becomes negligible in strong flows. This last point is made 
clear in the inset of Fig. 3a, where the difference Δσ between the two 
growth rates is seen to decay rapidly with μ.

We are now in a position to explain the emergence of helicoidal 
shapes. In a strong flow, unstable eigenmodes are planar but can 
develop and grow in any plane containing the flow axis. In addition, 
dominant modes always come in odd–even pairs with nearly iden-
tical growth rates. When a straight filament is perturbed, there is 
thus a strong likelihood for the two modes to grow simultaneously. 
The superposition of two adjacent odd–even planar modes such as 
those shown in Fig. 3b growing in different planes produces a coiled 
3D conformation that resembles a helix and continues to grow as 
such, with the two modes interacting as a consequence of geomet-
ric nonlinearities. A similar mechanism was previously proposed 
to explain the buckling of elastic rods in soft elastomer matrices33, 
though the governing equations and forces at play are very different 
in that problem.

The process by which linear buckling modes interact to pro-
duce helices can be formalized by deriving a nonlinear amplitude 
equation of the Ginzburg–Landau form9,34, as we briefly outline 
(see Supplementary Information for details). Close to the onset 
of buckling, we expand deformations on the basis of the first 
two linear eigenmodes as they dominate the unstable spectrum:  
hy,z(s, t) = A1

y,z(t)Φ(1)(s) + A2
y,z(t)Φ(2)(s). We emphasize that the 

bases used for the expansion in the two orthogonal planes are the 

Fig. 2 | helical buckling of a non-Brownian filament. Typical buckling 
sequence in a simulation of a non-Brownian filament with μ ¼ 6:5 ´ 104

I
. 

In the simulation shown, deformations first occur in a 2D plane before the 
3D helical shape develops. Deformations also tend to be largest near the 
centre of the filament. See also Supplementary Video 8.
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same, since the unstable mode shapes arising from the linear sta-
bility are identical, as seen from equations (3) and (4). Retaining 
nonlinear terms in equation (1) and using the orthogonality of 
the linear eigenfunctions with the eigenfunctions of the adjoint 
linear operator provides a system of coupled nonlinear ordinary 
differential equations for the four unknown time-dependent 
amplitudes. Solutions of this system exhibit amplitude saturation 
following an initial exponential growth regime, and in sufficiently 
strong flows always produce 3D helical conformations consistent 
with observations. Remarkably, even planar initial conditions 
evolve towards helical shapes as nonlinearities force the modes to 
interact and spontaneously break symmetry. This mechanism is 
illustrated in Fig. 3b,c for a representative μ ¼ 1:8 ´ 104

I
 (see also 

Supplementary Video 9). The two dominant linear eigenmodes in 
this case are plotted in Fig. 3b, where Φ(1) is found to be odd while 
Φ(2) is even. A superposition of these modes in orthogonal planes 
does indeed produce a helix in Fig. 3c, showing snapshots from 
a numerical solution of the weakly nonlinear model in which the 
spontaneous symmetry breaking is evident. We note that helix 
formation is also supported by a favourable energetic landscape 
(see Supplementary Fig. 8): a filament that is forcefully restricted 
to buckle and compress in two dimensions does indeed show a 
monotonic growth of its bending energy that is avoided by the 
provision to coil28.

The mechanism by which planar modes interact to create coiled 
morphologies is corroborated by non-Brownian simulations at the 
same value of μ in Fig. 3d: in this example, the helical morphology 
is also seen to emerge from an initially planar buckling mode and 
has a final shape that resembles the theoretical prediction of Fig. 3c.  

The mechanism is also consistent with the findings of Fig. 1,  
where we observed that helical buckling only occurs at large μ:  
in weak flows, the two dominant eigenvalues are well separated, 
resulting in the exponential growth of a single dominant mode and 
emergence of a planar shape. While we anticipate that planar buck-
ling may also occur in experiments and Brownian simulations, it is 
typically not observed, as thermal shape fluctuations immediately 
promote a 3D shape.

the radius of the helix is independent of filament length
We now quantify the evolution of the shape during a buckling 
event from experiments and simulations. Fig. 4a shows the helix 
length, estimated as the end-to-end distance Lee, and effective 
radius R as functions of dimensionless time from an experimen-
tal realization; similar observations are made in simulations (see 
Supplementary Fig. 4). In all cases, Lee decreases and R increases 
as the helix forms and is compressed by the flow. The nearly lin-
ear decrease of Lee with time allows us to extract a characteristic 
speed j _Leej

I
 for compression of the helix, which we plot as a func-

tion of _ϵL
I

 in Fig. 4b. A linear relationship j _Leej  0:7 _ϵL
I

 is found in 
both experiments and simulations, with a slope of less than unity  
that we attribute to the finite elastic resistance of the buckled  
helical shapes.

In the final stage of compression, the growth of the helix radius 
slows down as seen in Fig. 4a, and a nearly steady shape is reached 
with a roughly constant radius. We measure this final coiling radius 
from experiments and corresponding simulations (see Methods 
and Supplementary Information for details) and discuss its depen-
dence on the relevant parameters. Experiments typically have access 
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is even. c, Snapshots from a time sequence predicted by the nonlinear model, showing the formation of a 3D coiled conformation from the superposition 
of adjacent even and odd planar eigenmodes in orthogonal planes. See Supplementary Video 9 for an animation. d, Buckling sequence in a non-Brownian 
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to a limited range of strain rates (~0.4–0.6 s−1), so variations in μ, 
covering over three decades, are primarily due to variations in L. 
Consequently, the radius is first displayed in Fig. 4c as a function 
of L, keeping all other parameters constant. Quite surprisingly, a 
nearly constant value of R is observed, indicating that the final helix 
radius is largely independent of contour length. The agreement 
between experiments and simulations for the same conditions is 
again very good.

This peculiar result can be rationalized by a scaling theory for 
the radius of an inextensible helix undergoing compression in flow 
(see Supplementary Information for details). During compression, 
the pitch of the helix decreases, causing its radius to increase by 
inextensibility. Balancing the associated viscous dissipation with the 
rate of change of elastic bending energy during this process yields 
the simple scaling

R  B
μ _ϵ

� �1=4

ð5Þ

which is indeed independent of contour length and only weakly 
dependent on compression rate. This result points to the elasto-
viscous length ðB=μ _ϵÞ1=4

I
 (ref. 35), which is the only length scale of 

the problem besides L, as the fundamental scale for the buckling 
process. To test this scaling law and probe the dependence on flow 
strength and bending rigidity, we performed additional Brownian 
simulations in which strain rate and persistence length were varied 
while keeping L constant. The measured radius for three different 
persistence lengths is displayed in Fig. 4d as a function of the elas-
toviscous length and shows a clear collapse of the data, corroborat-
ing the scaling prediction. Finally, we summarize all the data from 

experiments and both types of simulation in dimensionless form in 
Fig. 4c, where our model predicts

R
L
 μ�1=4 ð6Þ

A similar collapse is found, with some scatter arising from fluctua-
tion-induced defects. A numerical fit yields an exponent of −0.24, 
in excellent agreement with the scaling prediction.

A generic transition in strain-dominated flows
We have elucidated the coiled morphologies of actin filaments in 
compressional flow through a combination of experiments, simu-
lations, scaling analysis and weakly nonlinear stability theory. The 
two distinct approaches used in numerical simulations highlight the 
robustness of this phenomenon, in which neither Brownian fluctua-
tions nor a 3D flow field are necessary conditions for helical buck-
ling. The stability theory also supports this idea and explains the 
origin of these structures in a simple 2D stagnation point flow. As 
uncovered in our analysis, the key to helical coiling is the nature of 
the eigenspectrum associated with the linearized buckling problem, 
in which dominant eigenmodes come in odd–even pairs with nearly 
identical growth rates and interact nonlinearly to form helicoidal 
shapes. Our analysis is an addition to the study of post-buckling 
mode interactions that are often responsible for non-planar struc-
tures36. Remarkably, this distribution of eigenvalues is quite generic, 
and helical buckling has also recently been observed for very flex-
ible filaments in shear flow (see Supplementary Fig. 10), where the 
dynamics is more subtle due to the non-stationary base state of a 
tumbling straight filament.
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I
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I
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I
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I
. Error bars in c–e show 1 s.d. over the averaging window defined in a.
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The helical buckling instability uncovered here probably serves 
as an explanation for a number of past experimental observations 
where helicoidal morphologies were reported but largely over-
looked: for example, during the manufacturing of synthetic wet-
spun fibres for cosmetics, where long fibres undergo buckling in 
a compressional flow37, in biology, where the sessile protozoan 
Vorticella is known to propel by exploiting the sudden calcium-
powered contraction of its slender stalk38, or during the transport 
of elastic fibres in turbulent flows39. The fundamental mecha-
nism highlighted by our analysis should advance our under-
standing of these various phenomena and may also be exploited  
for the controlled microfabrication of chiral objects from 1D  
elastic filaments.

Online content
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contributions and competing interests; and statements of data and 
code availability are available at https://doi.org/10.1038/s41567-
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Methods
Experiments. The protocol for the assembly of actin filaments is well controlled 
and reproducible. Concentrated G-actin, which is obtained from rabbit muscle cells 
and purified according to the protocol described in refs. 14,40, is placed in F-buffer 
(10-mM Tris-HCl, pH = 7.8, 0.2-mM ATP, 0.2-mM CaCl2, 1-mM DTT, 1-mM 
MgCl2, 100-mM KCl, 0.2-mM EGTA and 0.145-mM 1,4-diazabicyclo[2.2.2]octane) 
at a concentration of 1 μM. At the same time, Alexa488 fluorescent phalloidin at the 
same molarity as G-actin is added to stabilize and visualize actin filaments. After 
1 h of polymerization in the dark at room temperature, concentrated F-actin is 
diluted 20- to 50 -fold for the following experiments. 45.5 % (w/v) sucrose is added 
to match the refractive index of the poly(dimethylsiloxane) channel (n = 1.41) to 
obtain better image contrast. The viscosity of the suspending fluid with 45.5 % (w/v) 
sucrose is 5.6 mPa s at 24 °C, measured with an Anton Paar MCR 501 rheometer. 
The filaments obtained with this protocol have ℓp = 17 ± 1 μm and L ~ 20–80 μm.

A hyperbolic poly(dimethylsiloxane) channel, which has been optimized by 
taking into account the effect of the varying rectangular cross-section25, is used 
to provide the background straining flow. In this geometry, filaments experience 
homogeneous strain rates for a certain residence time as they are transported in 
the centre of the channel by a flow-focusing mechanism. An automated tracking 
system is used to keep filaments in the visual field of the camera, with an image 
blur of ≲±0.5 μm due to velocity differences between stage and flow. A stable flow 
is driven by a syringe pump (neMESYS 290N) and particle tracking velocimetry 
is used to ensure that the velocity profile is in agreement with theoretical 
predictions26. The lengths of the channel sections with constant strain rate and 
linearly varying strain rate are 1,200 μm and 800 μm, respectively, with a channel 
width of 789 μm upstream and 107 μm at the centre. The channel has a uniform 
depth of 100 μm in the z direction. The total flow rate Q is in the range of 3.1–
5.5 nl s−1, which provides average velocities of ~100 μm s−1, maximum velocities of 
~1 mm s−1 and a range of compression rates _ϵ � 0:4

I
–0.6 s−1.

Images are captured using a complementary metal–oxide–semiconductor 
camera (Hamamatsu Orca flash 4.0LT, 16 bits) with an exposure time Δt = 40 ms, 
and are synchronized with the stage displacements through external triggers. 
The shapes of the actin filaments are extracted through Gaussian blur, threshold, 
noise reduction and skeletonize procedures in the software ImageJ. A customized 
MATLAB code based on B-spline interpolation is then used to reconstruct the 
filament centreline along s and to calculate relevant parameters.

Numerical simulations. We have performed two complementary sets of 
simulations in two different flow geometries. Full details of the simulation methods 
are provided in Supplementary Information. In the Brownian simulations, the 
filaments are modelled as inextensible Euler–Bernoulli beams, and their dynamics 
in flow are captured using local slender-body theory, which accounts for drag 
anisotropy41. Brownian fluctuations are included and calculated to satisfy the 
fluctuation–dissipation theorem14,42. The background flow is chosen to be a purely 
2D compressional flow in free space, with u∞ = (−x, y, 0). The chosen background 
velocity field is an approximation to the experimental flow field measured in the 
channel mid-plane, where measurements are performed26. We use a straight initial 
condition for the filaments to emulate the hydrodynamic stretching taking place in 
the convergent part of the channel in the experiments.

In the non-Brownian simulations, the fibres are modelled as a network 
of Hookean springs that provide structural rigidity to the filaments15, with 
hydrodynamics captured by the method of regularized Stokeslets43. The filaments 
are finitely extensible and approach the limit of inextensibility for very small aspect 
ratio. We performed these simulations in an axisymmetric channel of circular 
cross-section that provides regions of constant compression and extension as  
in the experiments16.

Shape characterization. We track the evolution of the helix shape as a function 
of Hencky strain _ϵt, which is a measure of the accumulated strain experienced 
by the filaments from t = 0, when their centre of mass enters the compressional 
region. The length is simply estimated using Lee(t) = ∥x(L, t) − x(0, t)∥ in the plane 
of motion, where x(s, t) is a Lagrangian parameterization of the filament centreline 
with s ∈ [0, L]. Estimating the coil radius is more challenging and is done using two 
complementary approaches illustrated in Supplementary Fig. 3. As experiments 
only provide shape projections in the (x, y) plane, we estimate the radius in terms 

of the lateral extent of the filament as R⟂(t) = [ymax(t) − ymin(t)]/2. In simulations, the 
full filament shape is available and we define an effective radius by fitting the cross-
sectional projection in the (y, z) plane with a circle: Reff

2(t) = 〈y(s, t)2 + z(s, t)2〉s.  
In both cases, we only consider the central part of the filament, where the 
conformation is mostly helical, and omit filament ends.

In experiments and Brownian simulations, the final helix shape is reached 
near a Hencky strain of unity, and we estimate the final radius by averaging either 
R⊥(t) or Reff(t) over _ϵt � 0:8

I
–1. In non-Brownian simulations, filaments typically 

experience larger Hencky strains, though the key features of the dynamics  
remain unaltered; in this case, we estimate the final radius by performing the 
average over _ϵt � 1:6

I
–2.
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