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As a stiff polymer tumbles in shear flow, it experiences compressive viscous forces that
can cause it to buckle and undergo a sequence of morphological transitions with increasing
flow strength. We use numerical simulations to uncover the effects of these transitions on
the steady shear rheology of a dilute suspension of stiff polymers. Our results agree with
classic scalings for Brownian rods in relatively weak flows but depart from them above the
buckling threshold. Signatures of elastoviscous buckling include enhanced shear thinning
and an increase in the magnitude of normal stress differences. We discuss our findings in
the light of past work on rigid Brownian rods and non-Brownian elastic fibres and highlight
the subtle role of thermal fluctuations in triggering instabilities.
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1. Introduction

Understanding and relating bulk rheological properties of complex fluids to the
orientations, deformations and interactions of their microscopic constituents has been
a long-standing challenge in fluid mechanics (Larson 2005; Schroeder 2018). With the
ability to visualize single molecules using fluorescence microscopy, over the last two
decades, a large body of research using deoxyribonucleic acid (DNA) has focused
on deciphering the dynamics and rheological properties of dilute long-chain polymer
solutions in simple flows (Shaqfeh 2005). The persistence length �p of DNA molecules
is much shorter than their typical contour length L, and in this limit conformational
properties are governed by a competition between entropic forces favouring coiled
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Regimes Scalings

η Σxy Σxx,Σyy,Σzz

Pe � 1 constant Pe Pe2

r3 + r−3 � Pe � 1 Pe−1/3 Pe2/3 Pe2/3

Pe � r3 + r−3 constant Pe Pe2

Table 1. Asymptotic scalings for the relative viscosity η and the individual stress components in dilute
suspensions of rigid Brownian rods in various regimes of the rotational Péclet number Pe and aspect ratio
r (Hinch & Leal 1972; Brenner 1974). The first and second normal stress differences N1 > 0 and N2 < 0 scale
similarly as the diagonal stress components.

conformations and viscous forces tending to stretch the molecules, as quantified by the
Weissenberg number Wi ≡ γ̇ τr or product of the applied strain rate γ̇ with the longest
polymer relaxation time τr. Along with coarse-grained simulations (Jendrejack, de Pablo
& Graham 2002) and kinetic theories (Winkler 2006), these molecular rheology studies
have highlighted how microscopic conformational dynamics give rise to macroscopic
rheological properties such as shear thinning and normal stress differences in shear flow
(Hur, Shaqfeh & Larson 2000; Schroeder et al. 2005), and lead to the ‘coil-stretch’
transition in extensional flow (Schroeder et al. 2003).

In the other limit, the rheology of rigid Brownian rod-like suspensions is also
well understood (Doi & Edwards 1988). Thermal fluctuations, in this case, result in
orientational diffusion with rotational diffusivity dr = 3kBT ln(2r)/πμL3, where kBT is
the thermal energy, μ is the shear viscosity of the solvent and r = L/a is the aspect
ratio of the rods with characteristic radius a. The competition between orientational
diffusion favouring an isotropic distribution and the background shear that tries to align
the rods is characterized by the rotary Péclet number Pe ≡ γ̇ d−1

r , where d−1
r describes

the orientational relaxation time. With increasing Pe, the preferential alignment of these
rod-like polymers near the flow axis reduces viscous dissipation, which results in shear
thinning and also yields non-zero normal stress differences. Three distinct scaling regimes
for the shear viscosity and normal stress differences as functions of Pe have been identified
and characterized by the foundational theoretical analyses of Leal & Hinch (1971), Hinch
& Leal (1972) and Brenner (1974) (see § 2.4 and table 1 for a summary). However, so
far, only rigid Brownian rods have been considered in detail, and the role of flow-induced
deformations on the rheology of these suspensions remains largely unexplored.

We address this problem here with a focus on stiff polymers characterized by �p � L,
the opposite limit compared with DNA. While in weak flows these filaments behave as
rigid rods, they are known to undergo various buckling instabilities in stronger flows
(Becker & Shelley 2001; Manikantan & Saintillan 2015; Liu et al. 2018; du Roure et al.
2019; Chakrabarti et al. 2020), yet clear insight into the specific role of these instabilities
in the rheology of dilute suspensions is lacking. Here, we use numerical simulations to
relate the morphological transitions of stiff Brownian filaments in simple shear flow to the
rheology of their dilute suspensions. We also contrast our predictions with known results
for non-Brownian deformable fibres (Becker & Shelley 2001; Tornberg & Shelley 2004)
and uncover how they are altered by shape fluctuations and orientational diffusion.

The paper is organized as follows. In § 2, we provide details of the polymer model,
measures of the extra stress and a brief summary of the scaling laws for Brownian rigid
rods. We present numerical results for the rheology in both two and three dimensions in
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§ 3, and discuss our predictions in the context of the rheology of rigid Brownian rods as
well as non-Brownian elastic fibres.

2. Problem description and methodology

2.1. Governing equations
In the dilute limit, we simulate the dynamics of a single polymer modelled as a fluctuating,
inextensible Euler elastica with centreline parametrized as x(s, t), where s is the arc length
(Liu et al. 2018). Hydrodynamics is captured by the local slender body theory for Stokes
flow, in which the centreline position evolves as

8πμ[∂tx(s, t)− u∞] = −Λ · f (s, t). (2.1)

Here, u∞ = (γ̇ y, 0, 0) is the background shear flow with constant shear rate γ̇ . The force
per unit length exerted by the filament on the fluid is modelled as f = Bxssss − (σxs)s +
f b, where B is the bending rigidity, σ is a Lagrange multiplier that enforces inextensibility
of the filament and can be interpreted as line tension, and f b is the Brownian force density
obeying the fluctuation-dissipation theorem. The local mobility operator Λ accounts for
drag anisotropy and is given by

Λ · f = [(2 − c)I − (c + 2)xsxs] · f , (2.2)

where c = ln(ε2e) < 0 is an asymptotic geometric parameter and ε = r−1 is the inverse
aspect ratio. This geometrically nonlinear description of the centreline elasticity has been
extensively used to successfully describe various elastohydrodynamic problems in both
low- (Shelley & Ueda 2000; Tornberg & Shelley 2004; Young & Shelley 2007; Lim et al.
2008; Manikantan & Saintillan 2013; Chakrabarti et al. 2020) and high-Reynolds-number
flows (Allende, Henry & Bec 2018; Banaei, Rosti & Brandt 2020). The present model is
identical to the classical planar Euler elastica problem (Singh & Hanna 2019; Audoly &
Pomeau 2000) and is a suitable description as long as the local curvature κ � a−1. In the
case of slender filaments used here for which a � L, such extreme deformations do not
occur over the range of flow strengths considered, thus justifying the use of this model.
Note that the mobility operator of (2.2) does not account for non-local hydrodynamic
interactions between distant parts of the filaments. Including these interactions can be
achieved using the non-local slender-body operator as done in our past work (Liu et al.
2018). This results, however, in an increased computational cost that is prohibitive for the
present study as it requires averaging over very long times. To test the consequences of this
approximation, we have also performed a few select simulations with full hydrodynamics,
where we observed only slight quantitative differences with the local drag model in terms
of the magnitude of stresses, but no difference in the scalings of the various rheological
quantities with respect to flow strength.

We scale lengths by L, time by the characteristic relaxation time of bending deformations
τr = 8πμL4/B, elastic forces by the bending force scale B/L2 and Brownian forces by√

L/�pB/L2. The dimensionless equation of motion then reads

∂tx(s, t) = μ̄u∞ − Λ · [xssss − (σxs)s + √
L/�pζ ], (2.3)

where ζ is a Gaussian random vector with zero mean and unit variance. Two dimensionless
groups appear: (i) the elastoviscous number

μ̄ ≡ γ̇ τr

c
= 8πμγ̇L4

Bc
, (2.4)
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serves as the measure of hydrodynamic forcing against internal elasticity and plays a
role analogous to the Weissenberg number for flexible polymers, and (ii) L/�p captures
the importance of thermal shape fluctuations. The limit of rigid Brownian rods formally
corresponds to μ̄ → 0 (no flow-induced deformations) and L/�p → 0 (no thermal shape
fluctuations). We note that μ̄ and L/�p are related to the rotary Péclet number:

Pe = μ̄c
24 ln(2r)

�p

L
, (2.5)

which will facilitate comparisons of our simulations of Brownian polymers including finite
bending resistance with analytical predictions for rigid Brownian rods.

2.2. Numerical methods
Numerical schemes to solve (2.1) in the absence of Brownian motion have been described
previously in great detail (Tornberg & Shelley 2004), and we provide only a brief outline
here. In (2.1), the line tension σ(s, t), which acts as a Lagrange multiplier, is an unknown.
To solve for it, we make use of the inextensibility constraint xs · xs = 1. Differentiating
this constraint with respect to time and using the slender-body-theory equation provides a
second-order linear ordinary differential equation for σ as explained in detail by Tornberg
& Shelley (2004), which is subsequently solved with the boundary condition σ = 0 at
s = 0, 1. The time marching of (2.1) is performed using an implicit–explicit second-order
accurate backward finite difference scheme, where the stiff linear terms arising from
bending are treated implicitly while the nonlinear terms are handled explicitly. The
boundary conditions for time marching are the force- and moment-free conditions for
the filament ends, which translate to xss = xsss = 0 at s = 0, 1. We used N = 64 − 128
points to discretize the filament centreline and typical time steps were in the range of
Δt ∼ 10−6 − 10−9.

Treatment of the spatially and temporally uncorrelated Brownian forces in (2.1) requires
special attention, and has been described previously by Manikantan & Saintillan (2013)
and Liu et al. (2018). Specifically, we apply a low-pass filter to smooth out the noise along
the centreline and typically remove 50 % of the high-frequency components in the process.
The algorithm was benchmarked against standard equilibrium properties of semiflexible
polymers (Wilhelm & Frey 1996).

2.3. Measures of stress
A calculation of the extra stress in a dilute suspension of force- and torque-free particles
was provided by Batchelor (1970). The single-particle contribution to the bulk stress
tensor in the dilute limit is given by the stresslet, which generalizes the Kirkwood formula
commonly used for molecular systems (Irving & Kirkwood 1950). For our polymer model,
the expression for the extra stress is

Σ = −n
〈∫ L

0

[
1
2(xf + f x)− 1

3 I(x · f )
]

ds
〉
, (2.6)

where n is the number density in the suspension, f is the dimensionless force density
exerted on the fluid with contributions from both elastic deformations and Brownian
fluctuations, and 〈·〉 denotes the ensemble average. This expression is extremely convenient
for non-Brownian fibres (Becker & Shelley 2001). However, in simulations of Brownian
polymers, fluctuations have contributions of O(Δt−1/2), where Δt is the integration
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Signatures of buckling in the rheology of stiff polymers

time step. These contributions also enter the Lagrange multiplier σ(s, t) that enforces
inextensibility, which results in a poor convergence of the ensemble average as first pointed
out by Doyle, Shaqfeh & Gast (1997). Because our interest is in the steady-state extra stress,
we instead use the Giesekus stress expression commonly used for polymers (Öttinger 1996;
Doyle et al. 1997),

Σ = −n
〈∫ L

0

[
1
2 (xR · u∞ + R · u∞x)− 1

3 I(x · R · u∞)
]

ds
〉
, (2.7)

where R = Λ−1 is the local resistance tensor along the centreline. Results obtained with
(2.7) were tested against (2.6) in various regimes of Pe. In weak flows (Pe � 1), the
Giesekus stress was found to slightly underestimate the magnitude of the viscosity as it
omits Brownian contributions, but excellent agreement was found in stronger flows and
identical scalings in terms of Pe were obtained by both methods across all regimes of Pe.
In the following, we present results based on (2.7), which is computationally more efficient
than the Kirkwood expression.

2.4. Summary of rigid rod rheology
A slender non-Brownian rod in shear flow undergoes a periodic tumbling motion known
as a Jeffery orbit (Jeffery 1922). During this periodic tumbling, the particle spends most
of its time aligned with the flow direction and equal amounts of time in the extensional
and compressional quadrants of the flow. This dynamics is fundamentally altered in
the presence of rotational diffusion. While the shear flow still results in quasi-periodic
tumbling, the Brownian rod is now able to stochastically sample different orbits (Zöttl
et al. 2019), which results in an anisotropic orientational probability distribution ψ(p) at
steady state, where p is a unit vector that identifies the orientation of the rod (Chen & Jiang
1999). This distribution leads to a mean orientation of the rod in the extensional quadrant,
which gives rise to a contractile stresslet as the inextensible rod resists stretching by the
flow. This stresslet in turn alters the effective viscosity of the system. In the dilute limit
of nL3 � 1, computing the extra stress reduces to obtaining the steady-state orientation
distribution of a single Brownian rod. Contributions to the stresslet arise from the external
flow and from Brownian diffusion, and can be computed using the slender body theory
(Batchelor 1970; Leal & Hinch 1971; Hinch & Leal 1972; Brenner 1974):

Σ f = πμnL3

6 ln(2r) [〈 pppp〉 − 1
3 I〈 pp〉] : E∞, Σb = 3nkBT[〈 pp〉 − 1

3 I], (2.8a,b)

where E∞ is the rate-of-strain tensor of the applied flow u∞. The extra stress Σ = Σ f +
Σb is thus entirely determined from the second and fourth moments, 〈 pp〉 and 〈 pppp〉,
of rod orientations. These moments can be computed from the steady-state orientation
distribution function ψ( p), which is set by the balance of the advective rotational flux
arising from the flow and of the Brownian diffusive flux. Hinch & Leal (1972) solved for
the distribution function and associated particle stress in three distinct asymptotic regimes
of the rotary Péclet number Pe. These regimes and corresponding scalings are summarized
in table 1.

The three rheological measures of primary interest to us are the relative polymer
viscosity η, and the first and second normal stress differences N1 and N2,

η = Σxy

μγ̇ nL3 , N1 = Σxx −Σyy

nkBT
, N2 = Σyy −Σzz

nkBT
. (2.9a–c)
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Figure 1. (a) Polymer viscosity η, (b) first normal stress difference N1, (c) negative second normal stress
difference −N2, (d) shear stress and (e) normal stress components as functions of Pe (bottom axis) and μ̄
(top axis) for polymers with �p/L = 1000 and r = 220 in three dimensions. The low- and intermediate-Pe
scalings are theoretical predictions for rigid rods, for which they are valid inside the pink (Pe � 1) and green
(1 � Pe � r3 + r−3) regions. The vertical dashed lines show the onsets of C buckling and U turns (Liu et al.
2018). ( f ) Typical sequences of conformations during tumbling, C buckling and a U turn. Corresponding
regimes and values of Pe are labelled in (a). In all figures, marked scalings before the buckling transition are
rigid rod predictions (solid line), whereas scalings past the transition are numerical observations (dotted line).

3. Numerical results and discussion

3.1. Three-dimensional rheology of stiff polymers
We present numerical results on the rheology in three dimensions, with a focus on the
case of stiff slender polymers with �p/L = 1000 and aspect ratio r = 220. In this limit,
the main effect of Brownian motion is to cause orientational diffusion with negligible
shape fluctuations, and any deformations are thus the result of elastoviscous buckling.
Figure 1(a–c) shows the relative polymer viscosity η, and first and second normal
stress differences N1,2 as functions of Péclet number Pe (or, equivalently, elastoviscous
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Signatures of buckling in the rheology of stiff polymers

number μ̄). In weak flows (Pe � 1, pink region), η exhibits a plateau whereas N1,2

both grow from zero as Pe2, with N1 > 0 and N2 < 0. With increasing flow strength,
shear thinning takes place as the polymers start aligning with the flow, and a second
regime begins with scalings of η ∼ Pe−1/3 and N1 ∼ Pe2/3 in perfect agreement with the
theoretical predictions of table 1. The data for the second normal stress difference are very
noisy in this range of Pe and fail to capture the expected scaling of Pe2/3 for reasons we
explain later. In this regime, the filament remains straight and tumbles quasi-periodically
as shown in the first row of figure 1(f ).

As the filament performs a tumble, it rotates across the compressional quadrant of the
flow, where it experiences compressive viscous stresses. Above a critical value of the
elastoviscous number of μ̄(1) = 306.6, these stresses can overcome bending rigidity and
drive an Euler buckling instability leading to deformed configurations reminiscent of a C
shape, typical of the first mode of buckling (Becker & Shelley 2001). The filament then
rotates as a C and stretches out again as it enters and sweeps through the extensional
quadrant. With increasing flow strength, the filament becomes more likely to buckle
while remaining nearly aligned with the flow direction, and this ultimately gives rise
to distinctive folded U-shaped conformations that perform tank-treading motions while
maintaining a mean orientation close to the flow axis (Harasim et al. 2013). As uncovered
in our past work (Liu et al. 2018), the transition to this new mode of transport occurs at
μ̄(2) = 1.8 × 103. Both of these thresholds are indicated by vertical lines in figure 1(a–c)
and, for the chosen values of �p/L and r, fall within the intermediate scaling range of
1 � Pe � r3 + r−3 (green region). Typical conformations from tumbling, C buckling and
U turns are shown in figure 1(f ).

Quite remarkably, we find that the onset of buckling has no immediate signature on
the rheology, with the Brownian rod-like scaling laws persisting past the critical value of
μ̄(1). This result is in contrast with the two-dimensional (2-D) rheology of non-Brownian
elastic fibres studied by Becker & Shelley (2001) and Tornberg & Shelley (2004), where
buckling is responsible for shear thinning and non-zero normal stress differences. This
discrepancy is attributed to the presence of three-dimensional (3-D) rotational diffusion in
our simulations. In shear flow, the viscous compressive force experienced by the filament
is a function of its orientation and reaches a maximum at an angle of 3π/4 with the
direction of flow in the plane of shear. In the presence of rotational noise, the filament
orientation is not restricted to the shear plane and the maximum compression experienced
is reduced. This translates to a set of measure zero for the probability density function
ψ( p) and, therefore, the probability of a buckling event is negligible at μ̄ = μ̄(1). As μ̄ is
increased beyond μ̄(1), buckling becomes increasingly more likely, and indeed η and N1,2
start to depart from the intermediate scalings before the onset of tank treading, as shown
in figure 1. This departure marks a transition to new scalings of η ∼ Pe−0.51±0.02 and
N1 ∼ Pe1±0.07, and is accompanied by a sharp increase in N2. These rheological changes
are clear signatures of elastoviscous buckling, as they occur within the range of validity of
the intermediate rigid rod scalings.

A more complete picture is provided in figure 1(d,e), which shows the shear and
diagonal components of the extra stress tensor. In particular, we find that normal stresses
in figure 1(b) are dominated by Σxx, while Σyy and Σzz, which are negative, have smaller
magnitudes. All three components follow the same scaling, with the intermediate scaling
of Pe2/3 giving way to a nearly linear scaling into the buckling regime. Note that for
Pe � 1, the values of Σyy and Σzz are almost identical, which explains the strong noise in
the data for N2 in figure 1(c), especially in the intermediate scaling regime.
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Figure 2. (a) Mean polymer orientation 〈θ〉, defined as the angle made by the dominant eigenvector of the
gyration tensor with the flow direction, as a function of Pe and μ̄. (b) Diagonal components 〈Gxx〉, 〈Gyy〉 and
〈Gzz〉 of the mean gyration tensor.

To relate these findings to filament conformations, we introduce the gyration tensor

G(t) =
∫ 1

0
(x − xc)(x − xc) ds, (3.1)

whose dominant eigenvector is used to define the mean filament orientation θ(t) with
respect to the flow direction. Its ensemble average is shown as a function of Péclet number
in figure 2(a). In weak flows (Pe � 1), 〈θ〉 asymptotes to the value of π/4 for an isotropic
orientation distribution and, correspondingly, the diagonal components of 〈G〉, which
describe the variance of the polymer mass distribution along the coordinate directions,
all tend to the same value of 1/4π, as shown in figure 2(b). Alignment of the filament with
the flow is accompanied by a decrease in the mean orientation angle 〈θ〉 with increasing
shear rate, and is also indicated by the growth and saturation of 〈Gxx〉 while 〈Gyy〉 rapidly
decays. Increasing flow strength also forces the filament toward the shear plane leading to
a decrease in 〈Gzz〉. In strong flows, the initiation of U turns leads to a sharper decrease in
both 〈Gyy〉 and 〈Gzz〉, as the emergent folded conformations remain increasingly aligned
with the flow direction, as seen in the third row of figure 1(f ).

It is interesting to note that the scaling law for the viscosity is altered at a slightly lower
value of μ̄ compared with the gyration tensor or mean orientation angle. This solidifies
the idea that the signature of deformations observed in the stress and viscosity stems from
the gradually more frequent occurrence of buckling events. During C buckling (second
row of figure 1f ), the deformed filament still tumbles as a whole, which leads to negligible
changes in the behaviour of the gyration tensor and mean orientation angle, even though
the stress components are affected.

3.2. Discussion
Above, we have discussed the case of stiff polymers and have compared our results with
known scaling laws for rigid rods in three dimensions. Stiff polymers and rods both
experience strong rotational diffusion. Shape fluctuations are absent in the case of rigid
rods and remain weak for the stiff polymers in our simulations performed in the limit of
�p/L � 1. The main difference between the two systems is thus the occurrence of buckling
instabilities above a given threshold for the stiff polymers. Numerical results show a clear
signature of such elastoviscous buckling on the rheology, with enhanced shear thinning
and normal stress differences compared with the case of rigid rods.
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Figure 3. (a) Polymer viscosity η, and (b) normal stress difference N1 as functions of Pe for (�p/L, r) =
(1000, 220) and (50, 100) in 2-D simulations. Vertical dashed lines show the two buckling thresholds, which
correspond to the same value of μ̄ = μ̄(1).

We now address the role of shape fluctuations on the rheology. Remaining in the limit
of weak fluctuations for stiff polymers, we can tune fluctuations by varying �p/L while
keeping rotational diffusion important, with a smaller �p/L corresponding to stronger
shape fluctuations. For simplicity, we present here results obtained in two dimensions, and
show in figure 3 the variation of the shear viscosity η and normal stress difference N1 as
functions of shear rate for two combinations of (�p/L, r). Note that the theoretical threshold
for buckling is identical in two dimensions and three dimensions, because the first instance
of buckling occurs for a filament lying in the shear plane. The theoretical onset of U turns
was predicted in our past work using a 2-D reduced-order model (Liu et al. 2018), but also
faithfully describes the transition in three dimensions because the dynamics is primarily
2-D in strong flows, as previously shown in figure 2(b). Scaling laws have been determined
for both η and N1 before and after the buckling threshold, with a transition region where
the scaling is changing continuously. Before the threshold, the measured scalings are in
agreement with 3-D rigid rod predictions within error bars, and quantitatively identical
results are obtained for both values of �p/L because elasticity plays a negligible role in
that regime. As the Péclet number increases, buckling occurs first for the smaller value
of �p/L, because Pe and �p/L are related by (2.5) and the buckling threshold occurs at a
fixed μ̄ = μ̄(1). Beyond the threshold, close agreement is found between the 2-D and 3-D
results, and identical scalings are obtained for η and N1 for both values of �p/L, which
indicates that varying the importance of shape fluctuations, while remaining in the limit
of weak fluctuations, does not alter the observed rheology noticeably. The limit of strong
shape fluctuations, relevant to a number of experimental systems and to previous work
(Harasim et al. 2013; Liu et al. 2018), is outside the theoretical and numerical frameworks
developed here.

Another observation can be made from figure 3. In three dimensions in figure 1, the
changes in the scaling laws of viscosity and normal stress differences do not occur right
at the theoretical onset of buckling, but are delayed owing to the presence of rotational
diffusion, as the probability for the polymer to align perfectly with the direction of
maximum compression is negligible right at the buckling threshold. On the contrary,
in two dimensions, any polymer performing a tumble is required to sweep through the
entire compressional quadrant and is therefore more likely to buckle. This interpretation
is confirmed by our 2-D results shown in figure 3, in which the change in scaling
owing to deformations now occurs slightly closer to the theoretical buckling threshold.
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Figure 4. Numerical experiment illustrating the respective roles of elastic instabilities and thermal
fluctuations. Perturbations for these simulations are obtained from a Brownian filament with �p/L = 50.
Variation of (a) shear stress and (b) first normal stress difference versus μ̄.

Nevertheless, and in contrast to fully non-Brownian systems (Becker & Shelley 2001), the
transition is not abrupt, likely owing to the presence of Brownian noise. The fact that the
slope changes occur closer to the buckling threshold confirms again that the occurrence of
C buckling, rather than U turns, is responsible for the change in behaviour. In addition, we
find that the emergence of U turns is not accompanied by another clear change in scaling.
Rather, both buckling events and U turns have the same signature on the rheology, in spite
of their distinct morphologies and dynamics.

Our results can also be discussed in comparison to previous observations made
for non-Brownian elastic fibres in two dimensions. For non-Brownian fibres, shape
fluctuations as well as rotational diffusion are absent. Tornberg & Shelley (2004) and
Becker & Shelley (2001) predicted the onset of normal stress differences and shear
thinning above the buckling threshold from 2-D simulations. In contrast to the case of
Brownian rods, normal stress differences are zero and the shear viscosity is constant in
the absence of buckling. No scaling laws for η and N1 exist for non-Brownian fibres in the
dilute limit.

Simulations performed with non-Brownian fibres require the use of an initial
perturbation for the buckling instability to be triggered, and the properties chosen might
influence the obtained results. Random fluctuations are naturally present in Brownian
systems, as investigated here, and thus no initial perturbation needs to be imposed. To
connect our Brownian simulations more directly to the non-Brownian case, we perform
a numerical experiment, which focuses for the sake of illustration on a regime where
μ̄ > μ̄(2) and where the dynamics is dominated by U turns with occasional S-shaped
modes (Liu et al. 2018). In this experiment, we perform a standard Brownian simulation
with �p/L = 50 but artificially switch-off Brownian forces f b at the initiation of any
buckling event, detected by the threshold of Ree/L < 0.98 on the end-to-end distance.
In this way, we produce initial conditions set by Brownian noise and thus identical to those
present in our Brownian simulations, but can investigate the arising stresses for a situation
without Brownian noise. Stresses are only evaluated once the noise has been switched off.
This artificial situation does not allow a meaningful viscosity to be calculated and thus we
show Σxy and N1 in figure 4. These stresses are plotted versus μ̄, which is more relevant
than Pe in the case of non-Brownian fibres that do not experience orientational diffusion.
Recall that μ̄ and Pe are proportional to each other in (2.5), while η and Σxy are related
through γ̇ in (2.9a–c).

The scalings obtained for Σxy and N1, with respect to μ̄, translate into η ∼ Σxy/γ̇ ∼
Pe−0.56±0.03 and N1 ∼ Pe0.87±0.06. Surprisingly, these exponents differ only slightly
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from those observed in the fully Brownian simulations in figure 3. As this numerical
experiment does not account for the Brownian stress that arises from shape fluctuations and
orientational diffusion during buckling, our results suggest that the leading contribution to
the stress and its scaling with flow strength is set by elastic instabilities, with fluctuations
mainly serving to trigger polymer tumbles, as in the rigid rod case, while also exciting
the dominant buckling modes. Note that Becker & Shelley (2001) found N1 < 0 for
non-Brownian fibres in sufficiently strong flows, in disagreement with our findings. We
believe this discrepancy may arise from the particular way the fibre backbones were
perturbed in their simulations.

Our numerical simulations have shed light on the role of elastohydrodynamic
instabilities on the rheology of dilute suspensions of stiff polymers in the limit of �p � L.
The leading effect of buckling was shown to enhance shear thinning in strong flows
while also driving an increase in normal stress differences in comparison to the case
of rigid Brownian rods. Detailed rheological measurements in the dilute regime and in
monodisperse systems are a challenge and have yet to be performed, but would be of
great use to confirm our numerical predictions and connect them with past observations
in more concentrated systems (Huber et al. 2014; Kirchenbuechler et al. 2014; Lang et al.
2019). Extensions of the present work may consider the case of semi-flexible polymers
with L ∼ �p, which is more challenging numerically, as well as the role of hydrodynamic
interactions in semi-dilute suspensions.
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