
PHYSICAL REVIEW FLUIDS 8, 113102 (2023)
Editors’ Suggestion

Chemomechanical model of sperm locomotion reveals two modes
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The propulsion of mammalian spermatozoa relies on the spontaneous periodic oscilla-
tion of their flagella. These oscillations are driven internally by the coordinated action of
ATP-powered dynein motors that exert sliding forces between microtubule doublets, result-
ing in bending waves that propagate along the flagellum and enable locomotion. We present
an integrated chemomechanical model of a freely swimming spermatozoon that uses a
sliding-control model of the axoneme capturing the two-way feedback between motor
kinetics and elastic deformations while accounting for detailed fluid mechanics around the
moving cell. We develop a robust computational framework that solves a boundary integral
equation for the passive sperm head alongside the slender-body equation for the deforming
flagellum described as a geometrically nonlinear internally actuated Euler-Bernoulli beam,
and captures full hydrodynamic interactions. Nonlinear simulations are shown to produce
spontaneous oscillations with realistic beating patterns and trajectories, which we analyze
as a function of sperm number and motor activity. Our results indicate that the swimming
velocity does not vary monotonically with dynein activity, but instead displays two maxima
corresponding to distinct modes of swimming, each characterized by qualitatively different
wave forms and trajectories. Our model also provides an estimate for the efficiency of
swimming, which peaks at low sperm number.
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I. INTRODUCTION

The world at low Reynolds number comprises a large variety of swimming microorganisms [1].
Examples range from spermatozoa that navigate through the female reproductive tract to fuse with
the ovum, to ciliated unicellular organisms like Paramecium commonly found in ponds, to bacteria
found in guts to algae in the oceans [2]. These microorganisms rely on various mechanisms to
break the time reversibility of Stokes flow in order to propel themselves in the suspending fluid [3].
While bacteria like Escherichia coli use the rotation of their helical flagellar bundle for propulsion,
eukaryotes like sperm cells rely on the propagation of bending waves along their flagella. Even
though the nomenclature of the flagellum is used for both prokaryotes and eukaryotes, their structure
and origin are distinctly different. Eukaryotic flagella (or cilia) are thin hairlike cellular projections
with an internal core known as the axoneme that has been preserved during the course of evolution
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[4]. The axoneme has a circular cross section and is roughly 200 nm in diameter with nine pairs
of microtubule doublets arranged uniformly along its periphery. The doublets are connected with
each other through a springlike protein structure called nexin that extends along the entire length
of the axoneme. Thousands of dynein molecular motors act between the microtubule doublets and
generate internal sliding or shear forces in the presence of ATP. Due to structural constraints, the
sliding forces are converted to internal bending moments that deform the flagellar backbone [5,6].
Through a highly coordinated binding and unbinding, the molecular motors conspire to produce
bending waves along the flagellum that help in the propulsion of spermatozoa [7]. There have
been several modeling efforts with varying levels of detail and complexity aimed at elucidating the
biophysical processes that give rise to these spontaneous oscillations in isolated and fixed filaments.
Brokaw’s work [5,8–12] has focused on the role of internal sliding forces, curvature sensitivity
of dynein motors, and axonemal twists in regulating both planar and helical flagellar wave forms.
Lindemann proposed an alternative “geometric clutch” hypothesis for flagellar wave forms, where
the dynamics of the molecular machines are regulated by the transverse force generated during
the bending of the axoneme [13–18]. More recently, biophysical models and experiments [6,19,20]
have shown that a sliding control mechanism can explain the properties of emergent wave forms in
spermatozoa quantitatively. While the basic mechanisms giving rise to spontaneous deformations
are now well known, the detailed relationship between internal dynein actuation, elastohydro-
dynamics of the flagellum, nonlocal hydrodynamic interactions, and emergent wave forms and
motility characteristics remains poorly understood. In this work we present a biophysical model of
sperm locomotion that integrates details of internal elasticity and hydrodynamic interactions with
a chemomechanical feedback loop for dynein activity within an idealized geometry. The model is
applied to elucidate the relationship between internal actuation and the resulting beating patterns,
and demonstrates the key role of dynein activity in controlling the gait and overall motility of the
spermatozoon.

The hydrodynamics of swimming sperm has been widely studied, going back to the classical
work of Taylor on swimming sheets [21]. This has been followed by a series of mathematical
analyses of flagellar propulsion [22–25] and hydrodynamic simulations [26–29]. Recent hydrody-
namic studies relevant to sperm motility have addressed the role of surfaces in sperm accumulation
[30,31], viscoelasticity of the medium [32,33], and geometry of the head [34,35]. Almost all [36] of
such mathematical models coarse grain the internal mechanics of the axoneme by prescribing the
kinematics of the flagellum.

However, it is known that a variety of chemical cues related to calcium (Ca2+) signaling along
the axoneme regulate the flagellar beating. Such signaling pathways are responsible for motility
[37], hyperactivation [38], and the reversal of wave-propagation direction along the flagellum [39].
As a first step towards understanding such biophysical phenomena, one needs to construct a model
that incorporates the necessary chemomechanical feedback loops giving rise to sustained flagellar
beating, coupled to all the relevant hydrodynamic interactions.

We address this in this paper by building on our previous work on active filaments used to model
spontaneous oscillations of isolated and fixed cilia and flagella [7]. The proposed biophysical model
of a swimming spermatozoon includes the following: (a) a simplified model for flagellar beating that
accounts for an idealized axonemal structure, internal elasticity, and dynein activity and kinetics and
(b) detailed nonlocal hydrodynamic interactions between the head and the flagellum. The paper is
organized as follows. First, in Sec. II we provide a brief description of the active filament model,
state the necessary boundary conditions, and outline the numerical method. We then discuss a
linear stability analysis in Sec. III followed by the analysis of various beating patterns and their
properties far from equilibrium. By characterizing the swimming trajectories and emergent wave
forms, we reveal how internal activity affects the motility and gives rise to two distinct modes of
swimming. Using an energy budget, we then highlight the efficiency of the model spermatozoon.
We finally discuss the features of both instantaneous and time-averaged flow fields. We summarize
and conclude in Sec. IV.
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FIG. 1. (a) Schematic of a swimming spermatozoon. In our model, a spheroidal head (shown in green) is
clamped to a flexible flagellum described as a planar space curve with centerline xf(s, t ). (b) Free body diagram
illustrating the balance of forces and moments at the head-flagellum junction.

II. SPERMATOZOON MODEL

A. Equations of motion

A mature human sperm head is 5–6 µm long and 3 µm wide [40]. We choose to model it as a
rigid spheroid of aspect ratio Rh. The flagellum of a human sperm cell has length L ∼ 30–50 µm
and cross-sectional diameter a ∼ 200 nm. We model this using an active filament model [7] that
incorporates the necessary structural details of the axoneme and accounts for various biophysical
active processes that drive spontaneous oscillations. The active filament model idealizes the 3D
axoneme by its 2D projection. In the “9+2” structure of the full axoneme, two microtubule singlets,
conventionally labeled 5 and 6, occupy the center of the axoneme and are permanently cross-linked,
thus having little or no relative motion between them. This bridge naturally introduces a highly
anisotropic bending rigidity to the overall structure, leading to an almost planar beating of the
flagellum. This provides a basis for the 2D idealization of the axoneme used here, which can produce
only planar deformations. As depicted in Fig. 1, the spheroidal head is clamped to the flagellum and
is immersed in a 3D infinite fluid bath.

We parametrize the centerline of the active filament by its arc length s ∈ [0, L] and identify any
point on it by the Lagrangian marker xf (s, t ) in a fixed reference frame. For an inextensible filament,
we then have

xf (s, t ) = xf (0, t ) +
∫ s

0
t̂(s′, t ) ds′, (1)

where t̂ = cos φ êx + sin φ êy is the tangent to the centerline and φ(s, t ) is the tangent angle as
depicted in Fig. 1. We also define the associated unit normal along the centerline n̂ = − sin φ êx +
cos φ êy. The velocity at any point along the filament is then given by

v(s, t ) ≡ ẋf (s, t ) = v(0, t ) +
∫ s

0
φ̇(s′, t )n̂(s′, t ) ds′. (2)

Force and torque balance for a planar elastic rod in the overdamped limit yield [7]

fvis + ∂sF = 0, (3)

∂sM + N = 0, (4)

where fvis is the viscous force per unit length exerted by the fluid on the filament, F = T t̂ + N n̂
is the contact force, and M = M êz is the contact moment [41] in the active filament. Since the
flagellum is a slender filament (ε = a/L � 1), we model its hydrodynamics using nonlocal slender
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body theory (SBT) [42,43], which relates viscous forces to the centerline velocity as

8πν(v − H[fh]) = −M[fvis] ≡ M[ff ]. (5)

Here ν is the fluid viscosity. The term H[fh], where fh is the hydrodynamic traction on the sperm
head, denotes the disturbance velocity due to the motion of the head and is obtained as a single-layer
boundary integral equation [44]:

H[fh](s) =
∫∫

Dh

G(xf (s), xh) · fh(xh) dS(xh ), (6)

where G(x, x′) is the 3D free-space Green’s function for Stokes flow, and Dh denotes the 2D surface
of the head. The right-hand side in Eq. (5) involves the force per unit length exerted by the flagellum
on the fluid ff ≡ ∂sF = −fvis through a mobility operator M with two contributions: M = L + K
[42]. The local part L[ff ] accounts for drag anisotropy along the flagellum and is given by

L[ff ](s) =
[

1

ξ⊥
n̂(s)n̂(s) + 1

ξ‖
t̂(s)t̂(s)

]
· ff (s), (7)

where ξ⊥ = (2 − c)−1 and ξ‖ = −(2c)−1 are resistance coefficients in the normal and tangential
directions, and c = ln(ε2e) < 0. Nonlocal hydrodynamic interactions between distant flagellar
sections are captured by K[ff ] defined as

K[ff ](s) =
∫ L

0

[
I + R̂(s, s′)R̂(s, s′)

|R(s, s′)| · ff (s′) − I + t̂(s)t̂(s)

|s − s′| · ff (s)

]
ds′, (8)

where R(s, s′) = xf (s) − xf (s′) and R̂ = R/|R|.

B. Active filament model

Here we provide a concise overview of the active filament model for the flagellum, which directly
follows our past work on clamped filaments [7] as well as a prior model by Oriola et al. [19]. These
build on an earlier model by Riedel-Kruse et al. [6] and on seminal work by Brokaw [5,8]. The
interested reader is pointed to these references for further details. We idealize the 3D axoneme by
its planar projection in the plane of motion, described as an elastic structure of width a, length L,
and centerline xf (s). In this projection, microtubules from the opposite sides of the axoneme are rep-
resented by two polar filaments x± = xf ± an̂/2 clamped at the base at s = 0 and connected to one
another by passive nexin cross-linkers as well as dynein motors, which exert shear forces ± fm(s)t̂(s)
per unit length. These forces result in a sliding displacement �(s, t ) = a[φ(s, t ) − φ(0, t )] between
the two filaments. The sliding force density can be expressed as

fm(s, t ) = ρ(n+F+ + n−F−) − K�(s, t ), (9)

where ρ is the line density of motors, n±(s, t ) is the fraction of bound motors on x±, F± is the force
exerted by an individual dynein, and K is the stiffness of nexin links modeled as linear springs.
The force exerted by the motors follows a linear force-velocity relation F± = ± f0(1 ∓ �̇(s, t )/v0),
where f0 is the stall force of dynein, �̇ is the sliding velocity, and v0 is a characteristic velocity
scale. The inability of the microtubules to freely slide apart means that the sliding forces give rise
to an active bending moment

M(s, t ) = êz

[
Bφs(s, t ) − a

∫ L

s
fm(s′, t ) ds′

]
, (10)

where B is the bending rigidity of the flagellum. Moment balance in the out-of-plane direction from
Eq. (4) yields

Bφss + a fm + N = 0. (11)
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Here and in the following, subscript s denotes differentiation with respect to arc length. The
attachment and detachment of dynein motors between the two filaments follow first-order kinetics:
ṅ± = π± − ε± + D∂2

s n±. The attachment rate π± = π0(1 − n±) is proportional to the unbound
motor population with a characteristic rate constant π0. We use a force-dependent detachment rate
as ε± = ε0n± exp(|F±|/ fc). Here ε0 is the characteristic rate of detachment and fc is the force scale
above which the motors detach exponentially fast. Note that more sophisticated models may include
a dependence of the detachment rate on local curvature [7,45], though we neglect this feature here.
The last term in the kinetic equation represents the diffusion of motors along the filament backbone
with diffusivity D. This accounts for stochastic binding and unbinding of motors in a coarse-grained
description and also provides numerical stability to our method. The value of D used in simulations
is small enough to have only a negligible effect on the results presented here.

C. Dimensionless governing equations

We nondimensionalize the arc length by L, and the sliding displacement by the axoneme diameter
a. The characteristic timescale for the problem is the motor correlation time τ0 = 1/(ε0 + π0). The
density of the sliding force between the filaments is scaled by ρ f0, and the elastic force in the
flagellum is scaled by B/L2. This results in four primary dimensionless groups:

(a) Sp = L(8πνξ⊥/Bτ0)1/4 is the so-called sperm number, comparing the timescale of bending
relaxation to the motor correlation time. Larger sperm number corresponds to a more flexible
flagellum.

(b) μa = aρ f0L2/B compares the active force to the passive bending force and is a measure of
the activity of the flagellum.

(c) μ = Ka2L2/B is the ratio between resistance from the nexin links and bending elasticity.
(d) ζ = a/v0τ0 compares the diameter of the flagellum to the characteristic displacement due to

motor activity.
We also define the duty ratio η = π0/(ε0 + π0), and f̄ = f0/ fc. Another dimensionless parame-

ter is the aspect ratio Rh of the spheroidal head: Rh = 1 refers to a spherical head, whereas Rh → ∞
corresponds to a slender rod-shaped head.

The dimensionless governing equations are now written as

Tss − Nφss −
(

1 + ξ‖
ξ⊥

)
Nsφs − ξ‖

ξ⊥
T φ2

s = ξ‖
(
φsu

d
n − ∂su

d
t

)
, (12)

Nss + T φss +
(

1 + ξ⊥
ξ‖

)
Tsφs − ξ⊥

ξ‖
Nφ2

s = Sp4φ̇ − ξ⊥
(
ud

t φs + ∂su
d
n

)
, (13)

φss + μa fm + N = 0, (14)

fm = n̄ − ζ ñ�̇ − μ

μa
�, (15)

ṅ± = η(1 − n±) − (1 − η)n± exp[ f̄ (1 ∓ ζ �̇)] + D∂2
s n±. (16)

Equations (12) and (13) represent the force balance in the tangential and normal directions and were
obtained by differentiating the slender-body equation (5) with respect to arc length, and Eq. (14) is
the dimensionless moment balance. We have introduced the following definitions: n̄ = n+ − n−
and ñ = n+ + n−. In Eqs. (12) and (13), ud

t and ud
n denote the tangential and normal components of

the disturbance velocity due to tractions on both the head and flagellum, which captures nonlocal
hydrodynamic interactions:

ud (s) = K[ff ](s) + H[fh](s). (17)
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D. Boundary conditions

The head of the spermatozoon has no motility and is pushed, dragged, and rotated by the force
and torque coming from the flagellum. The free body diagram in Fig. 1(b) illustrates the forces
acting on each component of the sperm model. The boundary condition at s = 0 is given by the
force and the moment balance equations

F(0) −
∫∫

Dh

fh(xh) dS(xh ) = 0, (18)

xf (0) × F(0) + M(0) −
∫∫

Dh

xh × fh(xh) dS(xh ) = 0. (19)

The distal end of the flagellum is force- and moment-free, which implies

F(1) = 0, M(1) = 0. (20)

In order to compute the unknown hydrodynamic traction fh, we make use of the no-slip boundary
condition on the sperm head, which reads∫ 1

0
G(xh, xf (s)) · ff (xf (s)) ds +

∫∫
Dh

G(xh, x′
h ) · fh(x′

h)dS(x′
h)

= Sp4

ξ⊥
[v(0) + φ̇(0)êz × (xh − xf (0))], (21)

where the right-hand side captures the rigid body motion of the head. Finally, we use a no-flux
boundary condition for the motor population, which translates to ∂sn± = 0 at s = 0, 1.

E. Numerical methods

The system of governing equations involves Eqs. (12)–(17) for the flagellum elastohydrodynam-
ics and internal motor kinetics and actuation, coupled to the boundary integral equation (21) on
the surface of the sperm head. The coupling occurs through the clamped boundary conditions at the
head-flagellum junction as well as through the net force and torque balance on the assembly as given
in Eqs. (18)–(19). To numerically solve this system, we first combine these governing equations to
yield a linear system for the unknown contact forces {T, N} [20]. The combined equations are given
as

Tss − Nφss −
(

1 + ξ‖
ξ⊥

)
Nsφs − ξ‖

ξ⊥
T φ2

s = ξ‖
(
φsu

d
n − ∂su

d
t

)∣∣∣t−�t
, (22)

μaζ ñ

[
Nss + T φss +

(
1 + ξ⊥

ξ‖

)
Tsφs − ξ⊥

ξ‖
Nφ2

s

]
− Sp4N − Sp4μaζ ñ φ̇(0)

= Sp4{φss + μan̄ − μ[φ − φ(0)]} − ξ⊥μaζ ñ
(
ud

t φs + ∂su
d
n

)∣∣∣t−�t
. (23)

For a given flagellar shape φ and given bound motor distributions n±, the unknowns in Eqs. (22)–
(23) are the contact forces {T, N}, the disturbance velocity ud , as well as the angular velocity φ̇(0)
at the base, whose treatment we explain further below. In our simulations, the disturbance velocity
ud is treated explicitly and determined from the forces computed from the previous time step at
t − �t . At t = 0, they are not included in the computation. An iteration scheme outlined in [20] can
be incorporated to improve the accuracy, but our numerical investigations suggest that it does not
alter the present results.

The boundary conditions on the tangential and normal forces are given by

T (1) = N (1) = 0, (24)
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Sp4

ξ⊥
vn(0) − 1

ξ⊥
(Ns + T φs) = ud

n

∣∣t−�t
, (25)

Sp4

ξ⊥
vt (0) − 1

ξ‖
(Ts − Nφs) = ud

t

∣∣t−�t
, (26)

where the first equation simply specifies the force-free boundary condition at the distal end. The
boundary conditions at s = 0 reflect the local force balance and involve the tangential and normal
velocity components vt (0) and vn(0) at the flagellum base, which are unknown and must match
those of the head at that point.

Equations (22)–(23), along with boundary conditions (24)–(26), constitute a boundary value
problem for the contact forces {T, N}. We discretize the flagellum along its arc length s with
Nf points uniformly distributed along the flagellum such that �s = 1/(Nf − 1), and the spatial
derivatives along the flagellum are then approximated with a second-order-accurate finite difference
scheme. This results in an algebraic systems of equations for the values of {T, N} at the grid points.
We note, however, that the three variables {vt (0), vn(0), φ̇(0)} remain unknown: these are the linear
and angular velocities at the base of the flagellum, which couple the motion of the flagellum to that
of the head and must be determined self-consistently along with the solution for the tension and
normal forces. To this end, the dynamics of the spermatozoon head must be analyzed, as we explain
next.

Equations (18)–(20) constitute a linear system for the traction field fh on the head surface, linear
velocity v(0) of the head, and angular velocity φ̇(0); however, it also involves forces along the
flagellum via the terms involving ff , F(0) and M(0) and is thus fully coupled with the governing
equations for the flagellum motion. Here we outline a method that allows us to eliminate the traction
field fh and recast Eqs. (18)–(20) into a linear system for {vt (0), vn(0), φ̇(0)} that can be combined
with the governing equations for {T, N}.

In order to approximate the surface integrals over the head surface Dh in Eqs. (18)–(20), we use
the boundary element method [46] and triangulate the ellipsoidal head surface with Nh triangles.
The integrals are then computed by Gaussian quadrature on each element. In discrete form, Eq. (21)
can be written as

Ahh · fh + Ahf · ff = Sp4

ξ⊥
{v(0) + φ̇(0)k̂ × [xh − xf (0)]}, (27)

where Ahh is a 3Nh × 3Nh matrix and Ahf is a 3Nh × 3Nf matrix that encodes the interaction between
the elements on the head and the flagellum. While Ahf changes at every time step as the flagellum
deforms, we note that Ahh is a function of the mesh geometry only on the head surface: therefore, it
does not change with time although its components must be rotated as for a second-order tensor as
the head orientation changes.

Inverting Eq. (27) and decomposing the filament base velocity into tangential and normal
components yields

fh = −A−1
hh · Ahf · ff + vt (0)fq

T + vn(0)fq
N + φ̇(0)fq

K , (28)

where

fq
t = A−1

hh · t̂, fq
n = A−1

hh · n̂, fq
k = A−1

hh · {k̂ × [xh − xf (0)]}. (29)

After inserting Eq. (29) into Eqs. (18)–(19), we arrive at

vt (0)Fq
t + vn(0)Fq

n + φ̇(0)Fq
k =

∫∫
Dh

(
A−1

hh · Ahf · ff
)
dS + F(0), (30)

φ̇(0)Mq
k =

∫∫
Dh

xh × (
A−1

hh · Ahf · ff
)
dS + xf (0) × F(0) + M(0), (31)
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TABLE I. Illustration of the unit translations and rotation of the spermatozoon
head, and their corresponding traction fields and net forces and moment.

Unit movement Traction distribution Net forces and moment

vT (0) = 1

vN (0) = 1

φ̇(0) = 1

fq
t (xh)

fq
n(xh)

fq
k (xh)

Fq
t =

Dh

fq
t (xh) dS

Fq
n =

Dh

fq
n(xh) dS

Fq
k =

Dh

fq
k (xh) dS

Mq
k =

Dh

xh × fq
k (xh) dS

where

Fq
t =

∫∫
Dh

fq
t (xh) dS, Fq

n =
∫∫

Dh

fq
n (xh) dS, Fq

k =
∫∫

Dh

fq
k (xh) dS (32)

and

Mq
k =

∫∫
Dh

(xh − xf (0)) × fq
k (xh) dS (33)

are the forces and moment induced by unit translations and rotations of the head as depicted in
Table I. Note that these quantities depend on only the geometry of the head and its mesh: they can
therefore be precomputed at the start of the simulation, as well as the matrix Ahh and its inverse in
a fixed reference frame. Projecting Eq. (30) on the tangential and normal directions and projecting
Eq. (31) along k̂ provides three linear equations relating {vt (0), vn(0), φ̇(0)} to the flagella variables
ff , F(0) and M(0), which are all linear functions of {T, N}. Combined with Eqs. (12)–(13) and
boundary conditions (24)–(26), they provide a linear system that can be inverted to solve for
{T, N, vt (0), vn(0), φ̇(0)} simultaneously at every instant.

F. Parameter selection

Following [20], we estimate model parameters from various experiments on cilia and flagella,
and typical dimensional values are reported in Table II. The corresponding dimensionless parameter
ranges are given in Table III. The key dimensionless groups of our problem are the sperm number
(Sp) and the activity number (μa): we focus the following discussion on analyzing the emergence
of spontaneous beating patterns and motility characteristics in terms of these two parameters.

III. RESULTS AND DISCUSSION

A. Linear stability analysis

We first provide a brief discussion of the linear stability analysis of a freely swimming sperm,
with additional details provided in the Appendix. The base state of our problem is a straight
undeformed filament. For simplicity, we assume a spherical head and neglect any hydrodynamic
interactions in this section. Having an ellipsoidal head in this calculation only weakly alters the
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TABLE II. Typical values of the dimensional parameters used in our simulations, as estimated from various
experiments.

Parameter Range Dimension Description

L 30–50 µm Length of human sperm [6]
a 200 nm Effective diameter of axoneme [40]
B 0.9–1.7 × 10−21 N m2 Range of bending rigidity of sea-urchin sperm and bull sperm [6,18]
K 2 × 103 N m−2 Interdoublet elastic resistance measured for Chlamydomonas [19]
ξ⊥ 10−3 to 1 Pa s Range of coefficient of normal drag in different viscous media [18,19]
f0 1–5 pN Stall force for motor dynamics [19]
fc 0.5–2.5 pN Characteristic unbinding force of the motors [47]
v0 5–7 µm s−1 Motor walking speed at zero load [47]
τ0 50 ms Correlation time of motor activity [19]
ρ 103 µm−1 Mean number density of motors [19]

h 5–6 µm Average length of the human sperm head [40]
wh 3 µm Average width of the human sperm head [40]

results presented here. We consider perturbations from this straight configuration of the form
φ(s) = ε�(s)eσ t , where σ is the growth rate and �(s) is the associated mode shape. The linearized
system of governing equations yields an eigenvalue problem for the unknown growth rate σ .

The results from this analysis are summarized in Fig. 2. The dependence of the real and imaginary
parts of σ on activity μa for a fixed sperm number of Sp = 8 is shown in Fig. 2(a). At low levels
of activity, Re[σ ] � 0, indicating that the straight equilibrium configuration is linearly stable to
perturbations, i.e., the sperm cell remains undeformed and does not swim. Upon increasing μa, a
Hopf bifurcation takes place, above which Re[σ ] > 0 and Im[σ ] �= 0, indicating the spontaneous
time-periodic oscillation of the active filament and subsequent swimming of the sperm cell. As
the level of activity keeps increasing, the growth rate Re[σ ] also increases while the magnitude of
Im[σ ] decreases monotonically until it finally reaches zero, marking a second bifurcation above
which the linear theory no longer predicts oscillations. This second bifurcation is also accompanied
by an increase in the slope of Re[σ ]. The critical activity level for both bifurcations increases
monotonically with Sp and is plotted in the (Sp, μa) parameter space in Fig. 2(b). Similar trends
had been predicted in past studies [7,19,48] considering fixed filaments that were either clamped or
hinged at the base: there, the second bifurcation in the case of clamped boundary conditions was
shown to be associated with a reversal in the direction of wave propagation along the flagellum
in the nonlinear regime, with retrograde (tip-to-base) propagation below the second bifurcation
switching to anterograde (base-to-tip) propagation above [7,48]. As we will see in the nonlinear
simulations of the next section, the behavior is different in the case of a freely swimming cell:
spontaneous oscillations with base-to-tip propagation are indeed observed both below and above the

TABLE III. Dimensionless groups and their typical values.

Dimensionless number Range

Sp = L(8πνξ⊥/Bτ0 )1/4 1–12
μa = aρ f0L2/B 2–15 × 103

f̄ = f0/ fc 2
μ = Ka2L2/B 100
ζ = a/v0τ0 0.4
Rh = 
h/wh 2
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FIG. 2. (a) Real and imaginary parts of the dominant eigenvalue σ obtained in the linear stability as a
function of activity parameter μa at a fixed sperm number of Sp = 8. The vertical dashed lines highlight
the Hopf bifurcation marking the onset of spontaneous oscillations and the second bifurcation above which
Im[σ ] = 0. (b) Phase diagram highlighting the thresholds for the Hopf bifurcation (red curve) and second
bifurcation (green curve) in the (Sp, μa) parameter space.

second bifurcation, but display a qualitative change in the beating and swimming behavior across
the transition.

B. Nonlinear dynamics, wave forms, and trajectory analysis

We now proceed to analyze the beating patterns and associated swimming trajectories from our
nonlinear simulations, where we explore the dynamics in the (Sp, μa) parameter space. Consistent
with the results from the linear stability analysis of Sec. III A, we find that spontaneous oscillations
emerge only above a critical level of activity that is dependent on sperm number and coincides
with the Hopf bifurcation identified in Fig. 2. Above the bifurcation, the flagellum starts beating
spontaneously. For all cases analyzed here, we find that the oscillations take the form of traveling
waves that propagate from the head towards the flagellum tip, giving rise to locomotion in the
forward direction. Note that this differs from past nonlinear simulations of clamped filaments [7,48],
where both anterograde and retrograde wave propagation was observed depending on the level of
activity, but is consistent with simulations of hinged filaments where only base-to-tip propagation
was reported [48]. Indeed, freely swimming cells are subject to significant oscillations of the head,
which makes them more similar to hinged filaments. Consistent with this observation, we found
that a significant increase in head size leads to the emergence of retrograde wave propagation close
to the onset of the instability. However, this regime is not representative of biologically occurring
sperm cells and therefore is not discussed here further.

Upon exploring the (Sp, μa) parameter space above the Hopf bifurcation, our main finding is
the existence of two qualitatively distinct swimming modes, which we proceed to characterize here.
Figure 3 overlays flagellar wave forms over one period of beating for two representative cases
corresponding to the same sperm number of Sp = 4 but two distinct levels of activity μa. Some
qualitative differences between these two cases can be gleaned visually. At the lower activity level
in Fig. 3(a), which we denote as mode 1, the wave form has a spindle-shaped envelope and involves
large rotations of the sperm head with respect to the swimming direction. At the higher activity
level in Fig. 3(b), denoted as mode 2, the wave form involves shorter-wavelength deformations and
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FIG. 3. Superimposed snapshots of a sequence of flagellar wave forms over one period of oscillation, for
two different levels of activity: (a) μa = 5820 (mode 1) and (b) μa = 10 910 (mode 2), both for Sp = 4. See
Videos S1 and S2 in the Supplemental Material [49].

adopts a tapered shape towards the head, which displays much weaker rotations than in the previous
case.

The starkest difference between the two swimming modes is encoded in the nature of the
trajectory traced by the sperm head as it swims. This is illustrated in Fig. 4(a), showing head
trajectories for two representative cases corresponding to each swimming mode. In both cases,
the trajectories involve a periodic zigzagging motion as the flagella oscillate and the cells swim
from right to left. Yet the two trajectories display opposite concavity in the x-y plane. This clear
distinction between the two types of motion allows us to systematically delineate their boundary in
the (Sp, μa) plane as shown in Fig. 4(b). The trajectory transition between modes 1 and 2 roughly
follows the shape of the second bifurcation identified by the linear stability analysis of Sec. III A but
occurs at a slightly higher value of μa, and we attribute this quantitative mismatch to nonlinearities.

FIG. 4. (a) Head trajectory for two representative cases with the same sperm number but different levels
of activity: (i) Sp = 4, μa = 1749; (ii) Sp = 4, μa = 11 928. The two trajectories show distinctly different
behaviors, with a change in concavity which is used to identify the transition between modes 1 and 2. (b) Phase
diagram in the (Sp, μa) parameter space highlighting the onset of spontaneous oscillations (which coincides
with the Hopf bifurcation of Fig. 2) as well as the trajectory transition delineating modes 1 and 2. (c) Dominant
PCA modes �1 and �2 corresponding to the same two cases as shown in (a).
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FIG. 5. Hysteresis transition from mode 1 to mode 2 of beating for Sp = 4, shown in terms of the amplitude
A of oscillation, defined as the maximum range of transverse displacement of the head over the course of one
beat. The hysteresis loop is traversed by slowly increasing or decreasing the activity μa at a given value of
sperm number Sp.

Quite remarkably, the transition between these two modes of beating exhibits bistability. As a
result, the emergent wave form near the threshold of transition is sensitive to the initial conditions
of the problem. To quantify this behavior, we first simulated beating patterns for a given pair
of {Sp, μa} close to the transition threshold. We chose parameters that, in the steady state, led
to mode 1 of beating. Then at the fixed value of Sp, we slowly increased the activity μa and
crossed the threshold for the second transition. We also performed complementary simulations
starting with mode 2 of beating above the transition threshold and systematically reducing activity.
These simulations demonstrated the persistence of both modes of swimming beyond the transition
threshold, an indication of bistability. As illustrated in Fig. 5, this bistable behavior can be described
by a hysteresis loop for the beat amplitude A, where A is defined as the maximum range of transverse
displacement of the head over the course of one beat, i.e., the range of y values in the plots of
Fig. 4(a).

We also characterize the wave forms for both modes by applying principal component analysis
(PCA) [50] on the curvature κ (s, t ) ≡ ∂sφ(s, t ), which is decomposed as

κ (s, t ) =
∑

n

wn(t )�n(s), (34)

where �n(s) is the nth PCA mode and wn(t ) is the associated weight. For all the cases in our sim-
ulations, we found that the first two principal values capture more than 90% of the spatiotemporal
information [20]. Figure 4(c) displays the two dominant PCA modes for the beating patterns shown
in Fig. 4(a). As observed in Fig. 3, the PCA modes reveal that larger activity results in a higher
spatial frequency (shorter wavelength) in the flagellar wave form.

We further explore the dependence of the swimming characteristics on sperm number and activity
parameter in Fig. 6, where we show the amplitude of the head oscillations, frequency of beating, and
swimming velocity in the (Sp, μa) parameter space. Very close to the Hopf bifurcation marking the
onset of spontaneous oscillations, the sperm cell oscillates with a very small amplitude as seen in
Fig. 6(a). As the activity μa increases, so does the amplitude of the head oscillations, which is largest
for mode 1 at intermediate sperm numbers close to the trajectory transition. As the transition from
mode 1 to mode 2 takes place, the amplitude decreases sharply as the nature of the flagellar beat
changes, and only very slightly increases again upon further increasing μa. As shown in Fig. 6(b),
the beat frequency is primarily controlled by dynein activity and decreases monotonically with
μa except across the trajectory transition, where it undergoes a positive jump. Similar trends had
previously been reported for clamped filaments [7]. The initial decrease of frequency with μa was
previously explained by Oriola et al. [19] as follows: a larger value of μa can be interpreted as
a larger number density ρ of dynein motors along the flagellum, resulting in an increase in the
time needed for the coordinated binding and unbinding of these motors and therefore a decrease
in the oscillation frequency. Setting a motor correlation time of τ0 = 40 ms results in dimensional
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FIG. 6. Variation in the (Sp, μa) parameter space of: (a) the amplitude A of head oscillations; (b) the beating
frequency f , estimated in Hz for a given choice of τ0 = 40 ms for the motor correlation time; and (c) the mean
swimming speed vh of the cell.

frequencies in the range of f ∼ 10–20 Hz, consistent with that of mammalian spermatozoa [40].
We finally show the swimming velocity vh in Fig. 6(c), which is calculated as the average velocity
of the sperm head in the x direction over one beating period. Close to the Hopf bifurcation and
onset of oscillations, the beating amplitude is very small as previously seen in Fig. 6(a), resulting in
a negligible swimming speed. With increasing activity, the swimming speed starts to increase, and
displays two distinct maxima, one for each swimming mode, and both located close to the trajectory
transition. Further increasing activity past the transition to mode 2 ultimately results in a decrease
in the swimming speed, as the energy input is spent in sidewise swaying motion of the flagellum
[7] with little propulsion over one beating period. These trends will be further illustrated in our
following discussion on efficiency of swimming.

C. Swimming efficiency

In order to quantify the performance of the swimming cell, we first probe into the energy budget
of our active spermatozoon model. This is given by [51]

dE

dt
+ Pd = Pa, (35)

where E is the net bending energy stored in the flagellum and Pd is the total viscous dissipation in
the suspending fluid. Pa is the active power input provided by the ATP-consuming dynein motors
and can be expressed as

Pa =
∫ 1

0
fm�̇ ds, (36)

where fm is the sliding force in the axoneme and �̇ is the sliding velocity. Integrating Eq. (35) over
one period of oscillation T0 yields

Wd =
∫ τ+T0

τ

Pd dt =
∫ τ+T0

τ

Pa dt, (37)

where we have used the fact that E (τ ) = E (τ + T0) in the steady state of beating. The above relation
points to the fact that, at steady state, the net active power input by the dynein motors is fully
dissipated in the viscous medium over one period of oscillation.

As a baseline with which to compare Wd , we also consider an idealized sperm head translating
along its major axis at a constant velocity equal to the swimming speed vh. The minimum energy
expenditure required for the cell head to translate at that velocity for a duration of T0 is then given
by Wideal = Cf v

2
hT0, where Cf is the translational resistance coefficient of the spermatozoon head for
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FIG. 7. Variation of the swimming efficiency ηswim of the sperm cell, defined in Eq. (38), in the (Sp, μa)
parameter space.

motion along its major axis, which is known analytically for a spheroidal shape [52]. This allows us
to define the efficiency of the spontaneously swimming cell as

ηswim = Wideal

Wd
. (38)

Figure 7 shows the variation of the swimming efficiency in the (Sp, μa) parameter space. We find
that the efficiency is primarily governed by the sperm number and is maximum for low values of
Sp, corresponding to stiffer flagella. The swimming efficiency shows a weak dependence on μa and
peaks at low Sp near the transition between the two modes of swimming, with a maximum value on
the order of 10%. Comparison with Fig. 6(c) also shows that the efficiency is positively correlated
with the mean swimming speed.

D. Flow fields

Finally, we proceed to discuss features of the flow fields generated by the swimming sperm.
The dimensionless instantaneous velocity at any point x in the fluid is obtained as the disturbance
induced by the distribution of tractions along the flagellum and on the surface of the head:

u(x, t ) = ξ⊥
Sp4

[ ∫ 1

0
G(x, xf(s, t )) · ff(s, t ) ds +

∫∫
Dh

G(x, xh(t )) · fh(t ) dS(xh)

]
. (39)

Figure 8(a) shows a snapshot of the streamlines of the instantaneous velocity field in the plane of
motion superimposed on top of the velocity magnitude for a typical simulation in mode 1, whereas
Fig. 8(b) shows the associated out-of-plane vorticity field; see Videos S3 and S4 in the Supplemental
Material [49]. Consistent with previous simulations by Ishimoto et al. [53] that reconstruct flagellar
beating patterns and flow fields from experiments, our velocity field is characterized by a pair of
counter-rotating vortices straddling the beating flagellum. As the flagellum oscillates and beats
periodically, these two vortical structures periodically change direction. The signature of these
dynamics in the vorticity field of Fig. 8(b) takes the form of alternating regions of positive and
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FIG. 8. (a) Snapshot of the instantaneous velocity field induced by a swimming sperm in the plane of
motion. The plot shows streamlines of the flow superimposed on a map of the velocity magnitude. (b) Cor-
responding out-of-plane vorticity field. Parameter values: Sp = 5, μa = 8000. See Videos S3 and S4 in the
Supplemental Material [49].

negative vorticity surrounding the flagellum, which are generated at the front of the oscillating head
and propagate along with the bending wave towards the distal end of the flagellum where they
vanish.

The time-averaged flow field for the same simulation is shown in Fig. 9(a). In the plane of motion,
it is characterized in the near field by two pairs of counter-rotating vortices, one surrounding the
sperm head, and the other on both sides of the flagellum, where the largest mean velocity is also
observed. In the far field, the symmetry of the average flow is that of an extensile Stokes dipole,
characteristic of a pusher, in which the fluid is pushed forward ahead of the cell by the moving head
and expelled backward in the rear of the flagellum [3]. The features of this time-averaged velocity

FIG. 9. (a) Time-averaged velocity field for the same simulation as in Fig. 8, where the velocity magnitude
has been normalized by its maximum value. (b) Dependence of the velocity magnitude on distance from the
flagellum tip along the positive x and y directions marked as dotted lines in (a).
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FIG. 10. Time evolution of the components of force multipole moments over two periods of oscillation,
for the same simulation as in Fig. 8: (a) symmetric traceless dipole, (b) symmetric traceless quadrupole, and
(c) antisymmetric traceless quadrupole. The oscillation period for this simulation is T0 = 0.24 s.

field are once again very similar to those observed in the reconstructed flow fields of Ishimoto et al.
[53]. The dipolar nature of the flow field is confirmed in Fig. 9(b), showing the decay of the velocity
magnitude in the axial and transverse directions, where a clear 1/r2 dependence is observed in the
far field. This is in contrast to the previously analyzed velocity fields of clamped active filaments
[7] that showed a 1/r decay in the velocity field. We find that the time-averaged velocity fields for
the two modes of swimming are very similar. However, the transient dynamics show some minor
qualitative differences, as seen by comparing Videos S3 and S5 in the Supplemental Material [49].

The features of the unsteady and time-averaged flow fields can be further understood by analyz-
ing the force multipoles exerted by the model sperm on the fluid, as well as their evolution over
one period of beating. Since the net force on the cell is zero, the first two relevant force multipole
moments in a Stokes multipole expansion are the dipole Di j and quadrupole Ki jk [54]. Denoting by
xc the center of volume of the head-flagellum system, these are respectively defined as

Di j =
∫ 1

0

[
xf, j (s) − xc, j

]
ff,i(s) ds +

∫∫
Dh

[
xh, j − xc, j

]
fh,i dS(xh), (40)

Ki jk =
∫ 1

0

[
xf, j (s) − xc, j

]
[xf,k (s) − xc,k] ff,i(s) ds +

∫∫
Dh

[
xh, j − xc, j

]
[xh,k − xc,k] fh,i dS(xh).

(41)

Figure 10 displays plots of the components of three tensors: the symmetric and traceless dipole
(or stresslet) tensor DS

i j , the symmetric quadrupole tensor KS
i jk , which has been symmetrized in

the first two indices and made traceless, and the antisymmetric quadrupole tensor KA
i jk . Note that

the antisymmetric part of the dipole moment is identically zero as there is no net torque exerted
on the swimmer, and that the quadrupole tensor is symmetric with respect to its last two indices by
construction. As shown in Fig. 10, all components exhibit large periodic oscillations as the flagellum
beats. Notably, many of the force moments change their sign over the course of one period: for
instance, the stresslet strength DS

11 oscillates between positive and negative values, indicating that
the cell alternatively behaves as a pusher and a puller, even though its time-averaged behavior is that
of a pusher as seen in Fig. 9(b). This behavior aligns with experimental measurements conducted
on flagellate microswimmers, e.g., [53,55]. We also note that the average values of both the dipole
and quadrupole tensors are much smaller compared to the maximum values observed during one
oscillation period. This analysis suggests that the contribution of higher-order multipoles to the
unsteady flow is non-negligible. These two noteworthy features can have a substantial impact on
hydrodynamic interactions between swimming cells, as previously pointed out by Schoeller and
Keaveny [56].
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IV. CONCLUSION

We have used a sliding-control active filament model to study the propulsion and hydrodynamics
of an idealized swimming spermatozoon. Our model captures a feedback loop between the internal
actuation by the ATP-powered dynein motors and the elastohydrodynamics of the deforming flag-
ellum and accounts for hydrodynamic interactions. Our simulations revealed that, following a Hopf
bifurcation, the flagellum starts to beat spontaneously with bending waves always propagating from
the head towards the tail. This anterograde wave propagation is typical in swimming sperm cells
but was absent for small activities in the previously studied case of clamped active filaments [7].
Flagellar deformations are accompanied by oscillations of the cell head, modeled as a rigid spheroid,
and result in locomotion in the forward direction. Flow fields computed from our simulations
correlate well with those observed in experiments [40] and display a characteristic 1/r2 decay in the
far field, confirming that swimming spermatozoa behave as force dipoles [3].

Exploration of the (Sp, μa) parameter space highlighted a transition at a critical value of μa

between two distinct modes of swimming, with qualitatively different kinematics and wave forms.
Specifically, we showed that increasing activity above the transition results in a reversal of the
concavity of the head trajectory, and in the emergence of high-wave-number deformation modes
in the flagellar wave form. An analysis of the mean swimming velocity demonstrated that it does
not vary monotonically with motor activity, but instead displays two maxima, each associated with
one of the two swimming modes. The prediction by our simulations of the existence of these two
modes suggests an important role for the regulation of dynein activity in the sperm flagellum. It is
known that an increase in dynein activity, triggered by increased levels of calcium in the flagellum
[57,58], is associated with sperm hyperactivation before fertilization [38], which is accompanied
by a qualitative change in the flagellar wave form and cell kinematics. The precise relationship
between the two swimming modes identified by our model and the transition to hyperactivation
remains, however, to be established.

While our model and simulations capture many salient features of sperm locomotion, they rely on
several simplifying assumptions that could be relaxed in future work in order to allow for more direct
comparison with experiments. In particular, we have assumed a simple shape for the sperm head and
uniform radius and mechanical properties for the flagellum: in reality, sperm morphology can vary
significantly among species as well as among males across a population [59]. Incorporating more
detailed morphological and mechanical features may be essential to capture certain characteristics
of sperm locomotion [60] and may also help shed light on variations in sperm performance [61]. Our
current model is also limited to planar deformations, while recent experimental evidence suggests
that flagellar deformations may in fact be 3D [62,63]: accounting for 3D deformations would require
a more detailed description of the axonemal structure and of the elastodynamics of the flagellum,
for instance, as an active Kirkhoff rod [41,64]. Other improvements to the present work could
include a model for internal dissipation inside the flagellum, which may be significant as suggested
by recent observations [65], as well as for the coupling of dynein activity with calcium signaling
[37,39,66]. Finally, we note that our model is well suited to study the phenomenon of hydrodynamic
synchronization between swimming spermatozoa [67,68], in the spirit of our past work on clamped
flagella [20]. This synchronization phenomenon is key to various collective dynamics in suspensions
of sperm cells [69], which up to now have been primarily studied using models in which the internal
active moments are prescribed [56,70].

APPENDIX: LINEAR STABILITY ANALYSIS

Here we outline the linear stability analysis performed in the main text. While the results in the
main text were shown for swimmers with spherical head, here we provide details for a more general
calculation with ellipsoidal heads. For the stability analysis we neglect hydrodynamic interactions
and consider only local anisotropic drag forces in the problem.
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The stability analysis follows a similar method as in the work of Oriola et al. [19] and is outlined
here. The base state of the problem (denoted by subscript 0) is given by a straight filament with
φ0 = 0 and uniform motor distributions

n±,0 = η

η + (1 − η)e f̄
. (A1)

In this base state, the contact forces are T0 = N0 = 0. We now perturb the conformation of the
filament as φ = εφ(s, t ) and the motor population as n±(s, t ) = n0 ± εn(s, t ), where ε � 1. Upon
linearizing the governing equations (12)–(15) and retaining terms up to O(ε), we obtain

nt = − η

n0
n + (1 − η)ζ f̄ e f̄ n0φt , (A2)

Sp4φt = −φssss + μφss + 2μa[ζn0φtss − nss]. (A3)

We now use the ansatz a(s, t ) ∼ eikseσ t for all the perturbation variables, where σ is the growth rate
of the problem and k is the spatial wave number. We can now combine (A2) and (A3) to obtain

k4 − μaχ (σ )k2 + Sp4σ = 0, (A4)

where

χ (σ ) = 2n0(1 − n0) f̄ ζ
ση

σn0 + η
− 2ζn0σ − μ

μa
. (A5)

Upon solving the characteristic equation (A4), we obtain four roots k j for j = 1, . . . , 4 and the
associated eigenfunction is given by

φ̃(s) =
4∑

j=1

�̃ je
ik j s. (A6)

In order to find the unknown growth rate σ , we make use of the linearized boundary conditions for
the problem given as

N (0) = 3rSp4Dn

4ξ⊥
[vn(0) − rφ̇(0)], (A7)

rN (0) +
∫ 1

0
N ds = r3Sp4D�

ξ⊥
φ̇(0), (A8)

φs(1) = N (1) = 0. (A9)

In the above expression, r = 
h/2L is the dimensionless semimajor axis of the spheroidal head, and
Dn and D� are its friction coefficients for translation perpendicular to its major axis and rotation
around its minor axis. For a head with aspect ratio Rh, these are given by [54]

Dn =
8

3Rh

(
R2

h − 1
)

(2R2
h−3)

(R2
h−1)1/2 ln

[
Rh + (

R2
h − 1

)1/2] + Rh

, (A10)

D� = 3R2
h + 5Rh + 2

10R3
h

. (A11)

On inserting Eq. (A6) for the eigenfunction into Eqs. (A7)–(A9), we obtain the following set of
equations:

4∑
j=1

(
3irDn

4ξ⊥
k−1

j + 3r2Dn

4ξ⊥
− k−2

j

)
� j = 0, (A12)

4∑
j=1

[
ik−3

j (1 − eik j ) + rk−2
j + r3D�

ξ⊥

]
� j = 0, (A13)
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4∑
j=1

ik je
ik j � j = 0, (A14)

4∑
j=1

k−2
j eik j � j = 0. (A15)

These equations can be written as A · � = 0, where A is a 4 × 4 complex-valued matrix. The
problem has nontrivial solutions only when det(A) = 0, which allows us to solve for the unknown
growth rate σ .
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