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Large cells often rely on cytoplasmic flows for intracellular transport, maintaining
homeostasis, and positioning cellular components. Understanding the mechanisms of
these flows is essential for gaining insights into cell function, developmental processes,
and evolutionary adaptability. Here, we focus on a class of self-organized cytoplasmic
stirring mechanisms that result from fluid—structure interactions between cytoskeletal
elements at the cell cortex. Drawing inspiration from streaming flows in late-stage
fruit fly oocytes, we propose an analytically tractable active carpet theory. This model
deciphers the origins and three-dimensional spatiotemporal organization of such flows.
Through a combination of simulations and weakly nonlinear theory, we establish the
pathway of the streaming flow to its global attractor: a cell-spanning vortical twister.
Our study reveals the inherent symmetries of this emergent flow, its low-dimensional
structure, and illustrates how complex fluid—structure interaction aligns with classical
solutions in Stokes flow. This framework can be easily adapted to elucidate a broad
spectrum of self-organized, cortex-driven intracellular flows.

cytoplasmic streaming | development | active matter | hydrodynamics | biophysics

Cells in the biome generally fall within the 2 to 30 pm range (1), primarily due to their
dependence on inherently slow diffusion processes for intracellular transport. This sug-
gests an evolutionary pressure to maintain the “right size” (2). However, exceptions exist.
From egg cells and algal plant cells to slime molds and unicellular ciliates, cells can often
reach several hundreds of microns or more in size. For these large cells, the transport and
mixing of intracellular components by diffusion are extremely slow (3). Instead, they often
manifest persistent, large-scale intracellular flows known as cytoplasmic streaming (4-8).

The stirring of cytoplasm is most commonly orchestrated by cytoskeletal elements
at the cell cortex. This class of boundary-driven flows can be broadly divided into two
categories. First, in which the active processes that generate these flows are predetermined
during developmental stages. This results in a unidirectional coupling between cortical
stresses and cytoplasmic flows. Notable examples of this process include the actomyosin-
driven reorganizations seen in Xenopus egg extract (9—11), cytoplasmic streaming observed
in algal cells (3, 12, 13), and the intracellular flows in amoeba spurred by cellular
deformations (14). Here, we focus on the second category of cytoplasmic stirring that
arises through the dynamical self-organization of the cytoskeletal elements driven by
bidirectional feedback between bulk flows and cortical stresses. Two prominent examples
of this are streaming flows in the oocytes of Caenorbabditis elegans (8) and the fruit fly,
Drosophila melanogaster (15-19). In both of these examples, the flow is believed to emerge
from fluid—structure interactions where nanometric molecular machines like Kinesin-1
traverse along flexible microtubules (MT's) anchored on the cell cortex, carrying payloads
that entrain fluid (20-22). In the fruit fly, the interplay of entrained flow and collective
deformation of anchored MT beds drives a self-organized vortical flow that spans the
entire cell chamber of 100 to 300 pm (22).

To understand this self-organized flow in fruit flies, one study developed an active
Brinkman-elastica model that describes the dynamics of an immersed and flexible MT
bed upon which agents carry payloads (23). Special homogeneous solutions to this
model, set in a 2D disk, showed that a global bending instability led to a large-scale
vortex within the cavity. Recent large-scale computations of discrete motor-loaded MT's
set in 3D geometries further elucidated the flow topologies (24). In the appropriate
parameter regime, these simulations involving over a million degrees of freedom,
consistently produce cell-spanning vortical flows, known as twisters, with remarkable
robustness. Mathematically, this dynamics suggests that intracellular twisters are stable
global attractors of a high-dimensional dynamical system. That said, how this complex
fluid-structure interaction phenomenon converges to such a robust solution remains
unknown. Here, we address this question by developing an active carpet model that is
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analytically tractable and is suitable for embedding in 3D cellular
geometries. Drawing inspiration from the intricate flows observed
in the fruit fly, this model possesses the versatility to be tailored
for elucidating a diverse range of cortically driven, self-organized
cytoplasmic flows.

Active Carpet Theory

Our model approximates semiflexible MT filaments as rigid rods
of length L anchored with their minus-ends to the cell cortex.
At their anchoring point, these rods have a torsional spring that
mimics the bending response of clamped, flexible filaments (8, 23,
25). We systematically perform this coarse-graining (Fig. 1) by
calibrating the bending response of a flexible filament to rotations
of an anchored rigid rod in a simple shear flow. This allows
us to quantitatively map the torsional spring constant to the
properties of the MT filament. Each rod acts as a track for the
Kinesin-1 motor proteins, as illustrated in Fig. 1B. The forces
from the plus-end directed cargos, propelled by these motor
proteins, are coarse-grained into a uniform compressive force
density, f,,. This force-density is directed along the bound MT
toward its anchored minus end. Following Newton’s third law,
the motors exert an equal and opposite force on the cytoplasmic
fluid. We characterize this dense MT carpet (17) by a uniform
areal density ¢y and its orientation by a polarity field n(y, #),
where y € 9D is the surface coordinate on the cell boundary
(Fig. 1). In this paper, we will denote any surface point by y and
any point within the cytoplasmic volume by x. The polarity field
evolves according to Jeffery’s equation (26) as

dmn(y, ) =(I—nn)-Vu| -n+ k—wTo X n. (1]
D &,

Here u(x, ¢) is the emergent cytoplasmic fluid velocity that
needs to be determined. The second term in Eq. 1 characterizes
the response from the restoring torque on the rod. Here, &, =
4rul’/3log(2/€) with € &~ 1073 being the aspect ratio of the
rodand p ~ 1 Pa.s being the viscosity of the cytoplasm, which we
model as an incompressible Newtonian fluid (18). The restoring
torque k,To stems from the torsional spring of stiffness 4, and
penalizes deviation of the MT orientation from the inward unit
surface normal 9(y). We estimate k,, ~ 4—5 B/L, where B ~ 20
pN.pm2 (27) is the stiffness of a single MT fiber (Fig. 1C).
The action of the molecular motors that drive the internal flow
is approximated by a concentrated layer of stress jump f(y, ¢)
across the interface S delineated by the tips of the MT layer

(Fig. 1B). Here we disregard the surface fluctuations of 35 and

define it as 35 := D + L&(y). The quantitative impact of this
simplification on the emergent dynamics is verified a posteriori.
In the Stokesian limit of interest, the dimensionless governing
equation for the momentum balance is then given as

—Vg+Au=0, V-u=0, [2]
u(y, ) =0, ondD, [3]
[u] =0, [o- 1A9]] (y, t) = —f(y, ). ondS. [4]

Here g is the fluid pressure, [2] = 4|35+ — alzs- denotes the
jump of any variable across the interface 95, and 6 = —gI +

(Vu + Vu”) is the Newtonian stress tensor.

Using the MT length L as the characteristic length scale, the
relaxation time 7, ~ &,/ k, as the time scale and a viscous force
scale, the parameters in the problem can be combined to yield two
key dimensionless control parameters: i) p = coL? characterizing
the surface density of the MT bed and ii) 6 = &,f,/(1Lky)
serving as a measure of activity. This dimensionless activity
compares the relative strength of compressive motor forces to
those derived from the restoring spring. There are two additional
geometric parameters in the problem: i) R = L;/L > 1 is
the ratio of the system size to the MT length and ii) y =
27/ log(2/¢) is a geometric constant that depends weakly on the
aspect ratio € of the MT. With this scaling, the dimensionless
traction jump in Eq. 4 can be expressed as (5] Appendix)

: Vu(w] . Bl

The first term in Eq. 5 arises from the forces exerted by the
Kinesin-1 motor proteins on the fluid (Fig. 1B). The second
term represents forces stemming both from the torsional spring
and from the rod’s response in the mean-field fluid flow (§7
Appendix). This completes our active carpet theory. In essence,
our model integrates a boundary force field as defined by Eq. 5
to an internal homogeneous Stokes flow delineated in Egs. 2—4.
The forcing and the emergent flow evolve self-consistently with a
partial differential equation (PDE) that details the polarity of the
MT bed as laid out in Eq. 1. Here, we have ignored the possible
variations of the MT density at the tips of filaments in the spirit
of a long-wavelength theory. Furthermore, we highlight that in
contrast with other problems of self-organized flows (28, 29),
the dynamics of the polarity field does not involve any surface
transport on the cell cortex. Its evolution is only coupled to

£y, ?) = pon + jy [TO X n—

nnn

Fig. 1. Schematic of the experimental biological system, coarse-grained theory, and relevant approximations. (A) A magnified view on the cell boundary depicts
the bent MTs in blue and molecular motors (kinesin-1) in purple, and the streaming flow in red. (B) A schematic illustrates the coarse-grained active carpet
model of the streaming flow. MTs are approximated as rigid rods with a torsional spring at their anchoring point to the cell boundary. (C) We calibrate the
spring stiffness k, using the deflection of a clamped MT fiber in a simple shear flow, approximated as a rigid rod of the same length L. The flow-strength
is characterized by ji = 8zujL%/(Bc), where 4 is the fluid viscosity, j is the shear rate, B is MT's bending rigidity, and ¢ = —log(£2e) is a geometric constant
associated with the fiber aspect ratio . As i increases, so does the spring stiffness. We use the mean value over a range of i for which the filament deflections

are moderate, resulting in k, ~ 4—5 B/L.

2of 9 https://doi.org/10.1073/pnas.2405114121

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2405114121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2405114121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2405114121#supplementary-materials

Downloaded from https://www.pnas.org by 49.206.25.81 on April 28, 2025 from | P address 49.206.25.81.

the cytoplasmic flows through the velocity gradient on the cell
boundary as seen in Eq. 1.

Results

Streaming Flows in Half-Space. We initiate our exploration with
simple, yet insightful dynamics within a 2D half-space. In this
setup, an infinite planar array of fibers is anchored to a no-slip
wall located at z = 0 (Fig. 24). A fixed point for the system
occurs when all the fibers are aligned along the z direction. In this
configuration, represented as ng = Z, the motor-induced pushing
forces renormalize the mean-field pressure, yielding ug = 0. A
small homogeneous transverse perturbation in the polarity field
of the form n = z + e@x (¢ <« 1) evolves as,

3 = [p6 — (px +1)] 9. (6]

Here ¢ is the angle made by the rods with the Z axis. The first
term in Eq. 6 is destabilizing and arises from an unidirectional
shear flow in the active MT layer that tries to rotate the rods
away from their upright position. The stabilizing second term is
due to the restoring torque from the torsional spring. As evident
from Eq. 6, the fixed point becomes unstable when,

_ 1
c > [—_ + ;(:| . (71
p

This stability boundary, beyond which we observe steady
streaming states, is shown in red in Fig. 24. A plane-wave

ikx—+ At

perturbation of the form e@(x) ~ e@e , elucidates the

wavenumber dependence of the growth rate as

Ak) = =14 pe*(1 = k)5 — x). 8]

The above dispersion relation accentuates the long-wavelength
nature of the instability. We find that the homogeneous state,

characterized by # = 0 is the most unstable wavenumber. This
mirrors behaviors observed in instabilities of active suspensions
(30). Further, from Eq. 8, we observe that large wavenumbers
experience exponential damping, and the growth rate asymptotes
to A(k — 00) — —1 (Fig. 2B). This is in contrast to active-
gel theories (31), where nematic elasticity results in an algebraic
decay of the growth rate at high wavenumbers.

Nonlinear simulations further confirm that the emergent
streaming state is homogeneous, characterized by a constant
deflection angle ¢; of the MT bed with the z axis. Fig. 2C
illustrates this steady-state deflection angle for a given activity o,

plotted against the MT bed density. We find, @; ~ /p — pe,
close to the critical density p,, indicating the hallmarks of a
supercritical pitchfork bifurcation. In this emergent steady state,
the fluid flow is constant and unidirectional above the MT
layer and is characterized by the streaming speed #,. At a given
activity, the streaming speed increases with the bed density
and is accompanied by increasing alignment of the MT fibers
with the wall (Fig. 2D). Nonetheless, at large p, hydrodynamic
interactions between MT's become screened suggesting that the
energy injected by the motor-proteins are dissipated at the scale
of a single rod, resulting in a scaling of the form ,uusz ~ fontts.
This scaling law leads to a streaming speed independent of the
MT density and increasing linearly with the motor force alone.
Indeed, these observations are corroborated by the saturation of
u; with increasing density in Fig. 2D and its variation with the
activity in Fig. 2. Finally, our theory underscores the emergence
of a fast relaxation time of the MT bed, arising from the collective
hydrodynamic interactions. Analyzing the relaxational dynamics
of an initially deflected bed (Fig. 2F) we determine this collective
response time scale as 7, ~ 7,/p, with 7, ~ &,/k, representing
the single MT relaxation time. With these insights, we now
ask, how this instability and the emergent flows are organized
in an abstracted spherical egg cell, where topology prevents
homogeneous solutions.

Fig. 2. Bifurcation analysis, streaming speeds, and relaxation dynamics in half-space. (A) Linear stability analysis (LSA) of the continuum theory predicts the
emergence of a streaming state characterized by a homogeneous deflection of the MT bed (shown schematically). Overlaid on the stability boundary (depicted
in red) are results from an active Brinkman-elastica model (in blue) obtained from ref. 23. Our active carpet model does not capture the oscillatory regime
of the elastic filaments but agrees well for the prediction of streaming states. (B) Dependence of the growth rate 1 on the plane wave number k. The growth
rate is maximal for k = 0 indicating a long-wavelength instability and decreases linearly with k for small wavenumbers. Large-wavenumbers are exponentially
damped and asymptotes to 4 = —1. (C) Steady state deflection of the fiber bed as a function of 5. As evidenced by the bifurcation diagram, the streaming states
arise from a supercritical pitchfork bifurcation of the straight MT bed. (D) Dimensional streaming speed us and the deflection of the MT bed relative to the
wall as a function of 5. As 5 — oo the streaming speed asymptotes to a finite value. (F) At a given density p, the streaming speed increases monotonically with
activity. For large density, we find us ~ 5. (F) Relaxation dynamics of a MT bed for various . The characteristic relaxation time of an isolated MT is 7y ~ & /kg. In
the presence of hydrodynamic interactions, the bed relaxes faster, indicating the emergence of a collective relaxation time z¢ ~ 7 /p.
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Integral formulation. To build toward our theoretical and com-
putational investigation of 3D interior flows, we first highlight
that solutions to Egs. 2—4 can be written as (32, 33)

u) = o [ ) Glxy) daty)
T J3s

1
~ % £“(y) - G(x y) dA(y), [9]
oD

where G(x,y) is the free-space Green’s function for the Stokes
equation. In Eq. 9, f(y) is the traction jump across 85 specified
by Eq. 5 and £¥(y) is an unknown traction on the cell cortex 3 D.
It is determined by imposing the no-slip condition u(y) = 0 on
dD. This boundary-integral formulation allows fast simulations
of flows inside smooth closed surfaces and helps us to derive
analytical solutions for spherical egg cells as demonstrated below.

Emergent Vortex in a Sphere. We start by examining the
emergence of streaming flows within a sphere of dimensionless
radius R > 1. Analogous to the half-space analysis, a fixed-point
of the system with u = 0 arises when ng = —e,, where e, is
the unit-outward normal to the sphere. To probe the stability
of this state, we consider the evolution of a slightly perturbed
polarity field n = —&, + en(6, ¢)e* (e K 1), where f lies
in the tangent-space of the sphere. Here, (7,0, ) represents
the spherical coordinates, where 8 € [0, x| is the polar and
¢ € [0, 2x) is the azimuthal angle. Realizing that the associated
flow u ~ O(e), the evolution of the perturbation from the
dimensionless form of the linearized Eq. 1 is given as

A= —du| _,—n [10]

As before, the first term in Eq. 10 is associated with a
destabilizing shear-flow in the MT layer and the second term
arises from the restoring torque. Drawing parallel to our plane-
wave expansion in the half-space, we expand n on the basis of
vector spherical harmonics (VSH) as

BO.) = Y W]+ D). [11]

{=1,|m|<t

Here we have introduced the set {Y}, W}', ®}'}, which are
three orthogonal VSH of degree £ and order m (for |m| < )
with £ being the polar and m the azimuthal wavenumber (34)
(Materials and Methods). Given a vector field represented in this
basis, Y}’ delineates its radial variation, ¥y" accounts for the curl-
free and @7’ the divergence-free component.

The Ansatz in Eq. 11 ensures that n is on the tangent space and
the coefficients {4}, ¢’} correspond to their specific amplitudes.
We now recall that the integral operators defined by Eq. 9
diagonalize in the VSH basis (35-37). This observation motivates
a solution approach in which we first expand the tractions in Eq.
9 on the chosen basis. On using the no-slip boundary condition
we can then determine the unknown velocity u(x) in terms of n.
This allows us to obtain an analytical expression (S Appendix)
for the growth rate for each polar wavenumber £ as

IEENAY
Al) = -1+ <%> 36— x). [12]

This expression is the central result from our linear theory
and elucidates various facets of the instability. It predicts that
the homogeneous fixed point becomes unstable for increasing

40f 9 https://doi.org/10.1073/pnas.2405114121

activity or MT density and exhibits a weak dependency on the
sphere size (Fig. 34). Notably, as R — 00, we recover the
stability threshold of the half-space, described by Eq. 7. We
further highlight that the dispersion relation is only a function
of the quantized polar wavenumber ¢ and is independent of
the azimuthal wavenumber . This follows from the spectral
properties of the integral operators as discussed in SI Appendix.

It is further evident from Eq. 7 that £ = 1 emerges as the
fastest growing mode and defines the stability boundary as seen
in Fig. 34. This mirrors the long-wavelength dynamics observed
in the half-space as large polar wavenumbers are exponentially
damped with A(£) — —1 as £ — oo (Fig. 3B). The dominant
unstable eigenmodes are characterized by the divergence-free field
@7, Fig. 3 C-(i) shows the axisymmetric polarity field for the
most unstable wavenumber £ = 1. The associated fluid flow is
reminiscent of a system-size vortex. As seen from Fig. 3 C-(i), this
flow is characterized by a pure rigid-body rotation in the interior
fluid and a shear flow in the MT layer, conforming to the no-slip
boundary condition on the cell cortex.

Nonlinear Dynamics. Building on our understanding from the
linear theory, we now probe the full nonlinear dynamics to
explore the self-organization of emergent flows beyond the
instability threshold. To this end, we start from a slightly
perturbed base state and numerically evolve Egs. 1, 5, and
9 simultaneously (Materials and Methods). Fig. 44 shows the
evolution of the polarity field over time (portrayed on the exterior
of the sphere). We characterize this evolution by color coding the
surface by the local polar order parameter defined as

P(0,¢) = |(I—¢e,) n(6, ). [13]

As evident from Eq. 13, regions of low polar order correspond
to MTs being orthogonal to the cell surface. To further quantify
the polarity field’s spatiotemporal features, we seck a spectral
expansion of the form n(6, ¢) = &'Y] + 0)¥] + ] P®.
This approach allows us to introduce the power-spectrum,
Pi(t) (Materials and Methods), which quantifies the azimuthally
averaged energy content across all modes of a given polar
wavenumber £.

In Fig. 4A, we observe that starting from the nearly radial
initial condition, the polarity field rapidly develops regions of
high polar order over the collective response timescale, .. These
regions are indicative of well-aligned MT patches inducing flows
parallel to their local orientations. This transient dynamics is
confirmed by a marked reduction in the radial component
associated with Py, accompanied by increased contributions
from other wavenumbers in the power-spectrum, as shown in
Fig. 4 B-(i). As the cytoplasmic flow ensues, it drives a self-
organization across the system in which regions of high polar
order compete and interact. These interactions progressively lead
to the formation of pronounced low polar order patches and give
birth to topological defects of charges both +1 (center) and —1
(saddles) as depicted in Fig. 44. Always appearing in pairs, these
disclination points in the surface polarity field preserve a global
topological charge of two, satisfying the Poincaré-Hopf theorem.
Ultimately, the system settles into a steady state, in which regions
of high polar order coalesce, leaving us with an axisymmetric
swirling state which we call a rwister following ref. 24. As evident
in the final snapshot, the alignment axis connects the two +1
defect centers on the two poles. The orientation and the chirality
of the emergent field is determined by initial conditions. Fig. 4
B-(i) reveals that this final state is characterized by a dominant
global contribution from £ = 1 mode corresponding to a vortex

pnas.org


https://www.pnas.org/lookup/doi/10.1073/pnas.2405114121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2405114121#supplementary-materials

Downloaded from https://www.pnas.org by 49.206.25.81 on April 28, 2025 from | P address 49.206.25.81.

Fig. 3. LSA of streaming flows inside a spherical egg. (A) Stability boundary illustrating the onset of twisters within a sphere. The threshold for the instability
is delineated by ¢ = 1, representing the most unstable wavenumber. Successive curves in progressively lighter shades of red denote increasing discrete
wavenumbers as they become unstable. (B) Variation of the growth rate i(¢) with the polar wavenumber ¢ for a given MT density 5 = 10 and activity ¢ = 3.
This highlights the long-wavelength nature of the instability. High wavenumbers are exponentially damped and asymptotes to —1 as £ — oo. (C) Top row: Three
representative surface polarity fields in terms of the VSH basis. The dominant unstable eigenmodes are characterized by @} and the subdominant one is given
by W' (not shown). Bottom row: Corresponding interior flows with the dashed line in circular cross-section representing the surface 3S. Axisymmetric modes
with m = 0 exhibit a cell-spanning vortex (i) and a bitoroidal flow (ii). The nonaxisymmetric mode in (iii) illustrates saddles and a center in the polarity field. The
associated flow-field is depicted for the upper hemisphere due to its mirror symmetry in the lower hemisphere. Here, we have fixed R = 5 corresponding to a

dimensional radius of ~100 pm.

flow in the interior and weaker contributions from £ = 2, 3.
We further highlight in Fig. 4C, that the evolution toward this
twister state is paired with a monotonic increase in the bending

energy of the MT bed defined as

&= lk(p/ [cos_1 (—e, - n(0, ¢))]2 dA. [14]
2 " Jap

This increase stems from the collective bending of the MTs
induced by the emergent cytoplasmic flows. In the steady state,
the energy injected by the molecular motors is balanced by
the viscous dissipation in the cytoplasmic flows, which in turn
maintain the bent conformation of the MT layer.

We now ask, how robust is this axisymmetric steady state? We
test this by initiating the system with a different initial condition.
The evolution of P¢(#) in Fig. 4 B-(ii) reveals that for this initial
condition, the system quickly settles onto a low-dimensional
manifold with a dominant contribution from the £ = 2 mode.
Our simulations indicate that this quasi-steady state closely aligns
with the nonaxisymmetric eigenmode shown in Fig. 3 C-(iii). It
stands distinct from the transient observed in the previous case,
as seen in Fig. 4 B-(i). However, over a long time, the mode
associated with the vortex flow (¢ = 1) grow, accompanied by
the decrease of the £ = 2 mode as before. The culmination
is an analogous axisymmetric twister state, characterized by an
identical power spectrum, which underscores the possibility of a
single global attractor governing the collective dynamics.

Properties of the Twister Flow. The emergent axisymmetric,
steady, streaming flow is strongly vortical. This emergent flow
has excellent quantitative agreements with recent particle image

PNAS 2024 Vol. 121 No. 30 e2405114121

velocimetry experiments on late-stage oocytes (24). Being driven
by the local polarity field, the hydrodynamics interior to the MT
layer resembles a rigid-body rotation spanning the entire cell size.
In sync with our predictions from the linear theory, we find that
the steady-state polarity field contains a dominant contribution
from the (I)? [Fig. 3 C-(ii)] mode, responsible for the vortex
flow. The flow in the plane of the vortex as shown in Fig. 5B is
purely two-dimensional. In this plane, the fluid velocity increases
almost linearly from the vortex core to the tips of the MT layer
(Fig. 5C) followed by a sharp decrease in the active layer as it
adapts to the no-slip boundary condition. However, this large-
scale vortical flow now also features a secondary swirl component
that channels fluid inward from the poles along the defect (or
twister) axis (Fig. 5 4 and C).

The structure of the weaker flow can be further elucidated
by examining the spectral decomposition of the polarity field
in its steady state. The spiraling pattern of this field around
defects deviates from the pure vortex mode represented by @9,
leading to two key outcomes. First, a radial variation emerges
in the orientation field, becoming pronounced near the defects
where MTs point inward, conforming to the geometric constraint
In| = 1. This behavior is represented by an axisymmetric mode
Y(z) shown in Fig. 3 B-(ii). Motor proteins push fluid along the
MTs pointing inward near the poles, and incompressibility then
induces a peripheral flow redirecting fluid back to the defect core.
This pattern manifests as a pair of toroidal vortices around the
defect axis, termed the bitoroidal flow, highlighted in Fig. 3 B-(ii).

The second component to this weaker flow stems from the
deviation of the projected polarity field from the equatorial lines
of the sphere. Appearing as a pair of sinks near the defects, this
weak deviation is described by the curl-free axisymmetric mode

https://doi.org/10.1073/pnas.2405114121
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Fig. 4. Nonlinear dynamics and the pathway to the robust swirling state. (A) Multiple views of the snapshots from the evolution of the polarity field n are
displayed by arrows on the exterior surface of the sphere. The surface is color coded by the local polar order parameter P(6, ¢). Emergent topological defects
with charge —1 (saddle) are marked by (x) and those with charge +1 (center) is marked by o. Time stamps are in terms of the dimensionless time scaled by
the single MT relaxation time zr. (B) Evolution of the power spectrum of the polarity field under two different initial conditions. The base state of ng = —&r
corresponding to ¢ = 0 was perturbed by i) including contributions from ¢ = 1, 2, 3 and ii) from only ¢ = 2 mode in the initial data. The mode ¢ = 1 is associated
with the emergent streaming flows. (C) The evolution of the dimensional elastic energy £ alongside the average-polar order parameter (P). The increase in the
bending energy is accompanied by a decrease in 1 — (P) characterizing the aligned state of MTs. Parameters: 5 = 10 (corresponding to roughly 3 x 103 MTs on
the surface), ¢ = 3, y = 0.83, and R = 5. The choice of ¢ corresponds to a dimensional motor force density of f; ~ 0.07 pN/pm. Assuming a single motor force

to be O(2 pN) (38) leads to an estimate of 1 to 3 kinesin motors per MT (23).

WY (shown in ST Appendix). This arrangement of the polarity field
incurs a tangential surface stress on the MT bed that induces a
similar bitoroidal flow, reinforcing the previous contribution. We
emphasize that the presence of this weaker flow in the emergent
state is innately nonlinear, rooted in the topological necessity to
have defects and the geometric constraints set by [n| = 1.

Low-Dimensional Dynamics. Despite the complexity of our
simulations and the excitation of several unstable wavenumbers
(Fig. 3A4), the streaming dynamics that surfaces is inherently
low-dimensional. More importantly, its core characteristics can
be distilled using select modes from the VSH basis. This
insight prompts us to explore whether we can obtain coupled
ordinary differential equations (ODEs) using a few salient modes
that could encapsulate the essential features of this behavior.
Accordingly, we propose an expansion for the polarity field as

L
radial vortex

n=A(r)Yo + IB(t)CD(l)I + IC(t)YgI + ID(t)(I);I . [15]

bitoroidal m#0
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Here, Yo = —&,/+/47 corresponds to the upright base state
of the polarity field and {®Y, Y9, ®}} respectively represent
the modes associated with the vortex, bitoroidal, and nonax-
isymmetric flows as illustrated in Fig. 3. We aim to derive
the ODEs that govern the evolution of the time-dependent
amplitudes {A(¢), B(¢) - - - } of each mode. The current form of
the expansion is motivated by its simplicity and ease of physical
interpretation. To obtain the amplitude equations, we first

approximate the interfacial traction jump as f(y) =~ p(6 — y)n,
a simplification reasonable near the bifurcation. We then use
Eq. 9 in conjunction with the no-slip boundary condition to
determine the velocity field u(x). Using this solution for the
velocity field, we expand Eq. 1 up to fourth order in amplitude
and use Galerkin projection to obtain the evolution equations
(SI Appendix).

To illustrate this reduced dynamics, we initiate our analysis by
considering the simplest case: a two-mode approximation. This
encompasses the vortex mode and the homogeneous radial mode
with C = D = 0. The ODEs governing the evolution of the two
relevant modes are given as
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Fig. 5. Characteristics of the twister flow. (A) The vortex axis, joining the two +1 defects, is identified as the imaginary anterior-posterior (AP) axis of the
abstracted cell. The vortex plane, together with the secondary swirling flow moving from the defect core to the center, is emphasized. (B) The flow interior to
the MT layer in the plane of the vortex resembles rigid body rotation. The color code is for the dimensionless in-plane velocity. (C) Dimensional speed as a
function of the normalized distance from the vortex center in the plane of the vortex (Left) and along the AP axis (Right). Parameters: same as in Fig. 4.

% = ( A2 — 47)YH(A) —F A B? 4732, [16] this secondary flow, we consider a three-mode approximation
dr (81 Appendix, Eqs. S70-872). This extends our previous case
dB by includi ibution from Y9 (the bitoroidal flow), whil
a5 _ y including contribution from Y, (the bitoroidal flow), while
dr ABQ(4, B), [17] maintaining D = 0. As shown in Fig. 6B, starting from an

initial condition of C(0) = 0, the reduced model evolves

toward a steady streaming state with contributions from all three
modes. Both the reduced model and computations reveal that this
secondary flow consistently appears for any choice of parameters
above the stability threshold. This persistence corroborates its
truly nonlinear nature, embedded in the geometric constraints of
the problem.

Our nonlinear simulations not only confirm the robust
emergence of the axisymmetric twister in the steady state but
also highlight transient nonaxisymmetric flows. This motivates
us to understand the interactions between axisymmetric and

where F = (6 — x)(R —1)?/R> and H(A), Q(A, B) are two
quadratic polynomials (Materials and Methods). The base state
n = —&, is represented by B = 0 and A = v/47. As predicted by
the LSA, this homogeneous radial state is unstable. The constraint
of In| = 1 implies that the dynamics effectively exists along a
single curve which is shown in Fig. 64. The dynamics on this
constrained manifold reveals that the system evolves toward a
stable steady state marked by a nonzero amplitude of the vortex
mode, inherently tied to a streaming flow. The emergence of
two stable fixed points with contrasting signs for B signifies

a lack of bias in the chirality of the vortex. This is further
illustrated from the B — —B symmetry in Eqs. 16 and 17.
The associated interior flow-field has the structure shown in
Fig. 3C consisting of a rigid-body rotation and a shear-flow in the
MT layer.

Our next approximation is motivated by the existence of
the weak bitoroidal flow in the full computations. To under-
stand how nonlinear interactions spontaneously give rise to

nonaxisymmetric modes. To this end, we retain all the terms
from Eq. 15 which now finally includes contribution from a
nonaxisymmetric mode @} (SI Appendix, Eqs. $73-876). The
velocity field associated with this mode is shown in Fig. 3
B-(iii). To compare with our nonlinear simulations shown in Fig.
4 B-(ii), we choose initial conditions close to the base state and
retain dominant contributions from this nonaxisymmetric mode.
As revealed by Fig. 6C, the trajectory of amplitude evolution
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Fig. 6. Mode dynamics, the global attractor, and unstable exact solutions. (A) Phase space structure for a two-mode approximation to the streaming dynamics.
The black curve represents the 1D manifold on which the dynamicsis constrained to be in. (B) Amplitude evolution for a three-mode approximation. The bitoroidal
flow spontaneously emerges through nonlinear mode interactions. (C) A four-mode approximation that now includes contribution from nonaxisymmetric mode
dynamics. The initial saturation and eventual absence of the nonaxisymmetric mode hints at the possibility of unstable solutions in the problem. The emergent
steady state corresponds to the stable fixed point obtained with the three-mode approximation. (D) Eigenspectra computed from a numerical LSA for the stable
twister state (in green) and an exact unstable solution (in red); 4 denotes the eigenvalues. This analysis highlights that the twister is an attractor of the dynamics.
The unstable branch shown in (E) is computed numerically and features significant contributions from the nonaxisymmetric mode d)% (Fig. 3) as hinted from
the reduced model.
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mirrors the power spectrum from the nonlinear simulations.
In concert with the simulations, here we observe an initial
amplitude saturation with nonaxisymmetric flows. However,
nonlinear mode interactions cause the vortex mode to grow. Its
growth is accompanied by the decay and eventual disappearance
of the nonaxisymmetric component. This hints at the symmetries
of the governing equations that allow the sustenance of only
axisymmetric flows in steady states.

Discussion

The Journey toward a Global Attractor. Our simulations, com-
bined with low-dimensional mode dynamics, firmly establish the
robustness with which the cell transitions to the streaming state.
To conclusively underscore that this is indeed a stable attractor,
we numerically probed the stability of the emergent fixed point.
The eigenspectra depicted in Fig. 6D provide evidence in support
of this.

Fig. 4 revealed that starting from an almost straight configu-
ration, the rapid onset of self-organization initiates over the fast
timescale of 7,. However, the duration for complete relaxation
to the streaming state shows subtle dependence on the initial
conditions. Further, the quasisteady transient dynamics [Fig. 4
B-(ii)] in simulations and in the reduced amplitude model, hint
at the possibility of low-dimensional unstable attractors. Indeed,
using a Newton—Krylov method on our governing PDEs, we
numerically pinpointed one such unstable fixed point of the
system, as illustrated in Fig. 6E. Strikingly, this unstable fixed
point predominantly features the nonaxisymmetric, divergence-
free @) mode, as previously alluded to by both simulations
and the reduced dynamics. However, a cell is not perfect. It
does not have uniformly distributed MTs, nor does it have a
homogeneous activity of motor proteins. We speculate that this
heterogeneity potentially makes the pathway toward the global
attractor more robust enabling the formation of these streaming
flows over a wide range of parameters. It remains to be seen how
the stability of the global attractor is altered in the presence of
intrinsic biochemical noise in the binding and force generation
of the motor proteins.

Cells are also not spherical. In Drosophila, late-stage oocytes
are best approximated as prolate ellipsoids with their aspect ratio
being dynamic during the streaming phase as it grows in size
(21). This broken symmetry in the problem raises the question:
how the collective dynamics and the emergent flow topologies
adapt to geometry. Recent computations seem to suggest that
in these egg-shaped cells, flows tend to align with the AP axis
(24) in contrast with the dynamics in a sphere, where symmetry
precludes any preferential axis and the final orientation is purely
set by initial conditions. How symmetry breaking leads to the
loss of possible solutions and ultimately to the genesis of a single
one remains unknown. Our coarse-grained PDEs provide an
ideal framework to analyze such low-dimensional dynamics in
future.

In summary, we have presented a coarse-grained active carpet
theory for understanding cytoplasmic streaming inspired from
the late-stage Drosophila oocytes. This theory has the form
of a boundary force field coupled to an internal Stokesian
flow and is the simplest mathematical abstraction within a
hierarchy of models aimed at deciphering these intracellular
dynamics (8, 23, 24). Through LSA, weakly nonlinear theory,
and computations we have quantitatively recapitulated the key
features of the emergent streaming flow. Here we provide insights
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into the low-dimensional organization of the collective dynamics
and reveal the phase-space structure leading to the twister.
We posit that our minimal description of the fluid-structure
interaction holds the potential for adaptation across a spectrum of
biological fluid mechanics problems: from transport in bacterial
carpets to ciliated propulsion (39-42).

Materials and Methods

VSH. Here we provide the definition of the VSH used in the main text for
analyzing solutions inside a sphere. Let 8 € [0, z] and ¢ € [0, 2x) be the
polarand azimuthal angles in the standard parameterization of the unit sphere.
The scalar spherical harmonic Y} of degree ¢ and order m (for |m| < £) is

defined in terms of the associated Legendre functions P} by

2041 [(€—=1Im])! im| ime
m _ 1m
Y7 (6, ¢) = o\ @ m) |m|)!P‘5 (cos9)e™M?. [18]
The VSH (Y, W7, @7} of degree £ and order m (for [m| < ¢)are defined
as (36)

Y] = -Y]¢, [19]
¥ = v, Y], [20]
¢27:§,va¥2", [21]
where V, = 09y + ﬁ%%. Given a spectral representation of the

polarity field n(6, ¢) = aj'Yy' + bW + ¢]'®]" the power-spectrum is
defined as

1 _ _
Po=— > POV + 6] 2@, &)
20+1 4
+ IR, ). [22]

Here we have introduced the inner-product of a vector f defined on the
unit-sphere as

_ 2r pmo _
0h = / / £ Fsin 0 dode, [23]
0 0
where f denotes the complex conjugate.

2-Mode Synamics. Eqs. 16 and 17 provide the ODEs for the 2-mode
approximation. The two polynomials appearing in these equations are given as

A Br+A
NH==--—""
HA) =~ N [24]
40Ay/7 — 5A 7 — 40x% + 16(57 — 3B2)F
AB) = ,
Q4 8) 1602372 [25]

where F = 5( — x)(R—1)3/R3.

Numerical Method. In order to solve for the emergent flows, we evolve Egs. 1,
5, and 9 simultaneously. Given a polarity field n(y), Eq. 5 provides the traction
jump across the fixed interface 3S := 3D + L9. We use a Sth-order accurate
quadrature scheme to discretize the surface integrals of Eq. 9 and use quadrature
by expansion to evaluate near interactions as outlined in refs. 43 and 44. For
simulations presented here, we used N ~ 2,700 quadrature points on the
spherical surface. Using the no-slip boundary condition provides us with an
integral equation of the first kind for the unknown traction f* on Eq. 9. The
resulting linear system for f" is solved using GMRES that typically takes five to
seven iterations. The velocity gradient on 8D required for the evolution of the
polarity field is then determined using a second-order accurate finite difference
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approximation. The polarity field is evolved with a second-order accurate Runge-
Kutta scheme with At ~ 5—10 x 1073,

Data, Materials, and Software Availability. All study data are included in
the article and/or S/ Appendix. The computational tools for the simulations is
freely available at https://github.com/fastalgorithms/fmm3dbie (45).
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