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The dynamics and morphological transitions of elastic filaments and semiflexible

polymers in viscous fluids underlie the complex non-Newtonian behavior of their suspen-

sions and also play a role in many small-scale biophysical processes from ciliary and flagellar

propulsion to intracellular streaming. Elucidating the physics behind the dynamic micro-

structural instabilities and transitions of such elastic filaments is key to unraveling the

mechanisms underlying their complex rheological behaviors, from shear thinning and nor-

mal stress differences to viscoelastic instabilities. In this work, we use slender-body-theory

from low Reynolds number hydrodynamics along with tools from nonlinear stability theory

and scaling analyses to understand various problems relevant to suspension dynamics and

biophysics. After discussing numerical experiments that probe fluctuations in semiflexible
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polymers we proceed to explain morphological instabilities of passive actin filaments in

simple shear flow and their role in the rheology of dilute suspensions. We then analyze a

spontaneous symmetry-breaking instability of lone actin filaments in compressional flow

that gives rise to chiral structures and draw similarities with classical helical buckling of

elastic rods. Both of these studies are complemented by microfluidic experiments per-

formed by collaborators as well as analytical solutions to simplified dynamical systems.

We then turn to the dynamics of active filaments that are driven by molecular motors.

Far from equilibrium, these filaments undergo a Hopf bifurcation leading to spontaneous

oscillations that mimic the beating patterns of eukaryotic cilia and flagella. We elucidate

the crucial roles of hydrodynamics and biochemical noise in their collective behavior and

highlight the relevance of our model in the context of biological experiments. Finally, we

study the asymptotic transport properties of Brownian filaments in 2D porous media and

of passive tracers in 1D lattices. Our computations identify various modes of filament

transport that involve trapping, gliding and vaulting past obstacles, and suggest a design

for a chromatographic device. Studies with passive Brownian tracers in peristaltic pump-

ing explain how dispersion is altered due to shear and the presence of entropic traps and

barriers.
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Chapter 1

Introduction

This thesis is a collection of problems that can be considered as an excursion to

the interface of soft-matter, biological physics and fluid-structure interaction with one

dimensional elastic continua in highly viscous flows. Soft matter or soft condensed matter

is an outgrowth of condensed matter physics that comprises a variety of physical systems

that can be structurally manipulated by thermal or mechanical stress of the magnitude of

thermal fluctuations. Pierre-Gilles de Gennes, often called as the ‘founding father of soft

matter’ physics, provided a number of illustrative examples and utilities of soft materials

in his 1991 Nobel prize lecture, when the field was emerging [11]. He pointed out that in

the spirit of Americans calling soft-matter as ‘complex-fluids’, two major characteristics

of the subject are its apparent complexity and flexibility that are evident in numerous

examples of dynamics of polymers, surfactants, colloids, foams, gels and liquid crystals. It

is beyond the scope of this thesis to discuss all such examples, and the interested reader

is pointed to available standard texts [12–14]. Here we discuss one fascinating example

concerning polymer dynamics that is borrowed straight from de Gennes’ lecture [11] and

serves as a good motivation for the central theme of the present work.

Andrew Keller and his co-workers presented a beautiful experiment where a dilute
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solution of flexible polymers (or coils) was subjected to a purely longitudinal shear achieved

by a four-roller setup [15]. It was found that beyond a critical shear rate γ̇c the medium

became birefringent and this was termed the ‘coil-stretch transition’ by de Gennes [16].

This phase-transition can be attributed entirely to hydrodynamics, and has to do with the

flexible chain offering more ‘grip’ to the flow as it opens up due to shear. The example

emphasizes a key aspect of soft-matter physics and also highlights the backbone of this

thesis: the coupling between mechanics and conformations. This central idea is explored

in all the problems presented here in the spirit of fluid-structure interaction problems in

viscous flow. We will focus on how competition between hydrodynamic and elastic forces

of polymers shape the emerging conformations that in turn dictate macroscopic properties.

Typical examples where polymer conformations and their dynamical behaviors in

viscous flow result in emergent behavior arise in the field of biophysics and rheology. Inside

all cells including bacteria and archea is a complex dynamic network of interlinked protein

filaments known as the cytoskeleton that forms the backbone of the cytoplasm [17]. The

cytoskeleton involves stiff biological polymers like actin, microtubules and certain inter-

mediate filaments [17]. Actin filaments have the ability to resist tension and compression,

allowing them to provide structural integrity to the cell membrane. They also participate

in important sub-cellular processes involving cell-signaling, muscle contraction and cyto-

plasmic streaming [18,19]. Microtubules are another biopolymer made of tubulin that are

typically stiffer compared to actin and participate in intra-cellular transport, cell-division

and gene regulations. Microtubules are also central to the internal structure of thin hair-

like cellular appendages called ‘cilia’ and ‘flagella’ that help eucaryotic cells like sperm,

Chlamydomonas and Paramecium to swim in viscous environment. Collective beating of

cilia results in metachronal waves that are responsible for large-scale fluid flows which help

in mucus transport and play a crucial role in developmental biology [20,21]. Finally one of
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the most important and well-studied biological macromolecules is Deoxyribonucleic acid

(DNA). This molecule is composed of two chains that coil around each other to form a

double helix carrying genetic instructions for the development, functioning, growth and

reproduction of all known organisms and many viruses.

DNA has been pretty much the model polymer used to study and understand

dynamics of flexible chains in flows. Indeed, almost 30 years after de Gennes’s theoreti-

cal prediction of a hysteresis loop in polymer solutions in extensional flow, Schroeder et

al. [22] were the first to observe this experimentally with λ-DNA. The case of such long-

chain polymers [23], for which the persistence length `p is much smaller than the contour

length L, has been characterized extensively in experiments [22,24] as well as in numerical

simulations [25] and mean-field models [26]. The dynamics in this case is governed by

the competition between thermal entropic forces favoring coiled configurations and vis-

cous stresses that tend to stretch the polymer in strain-dominated flows. The interplay

between these two effects is responsible for the coil-stretch transition in elongational flows

and tumbling and stretching motions in shear flows, both of which are well captured by

classic entropic models [27–29] that approximate the flexible polymer chain as monomers

(beads) connected to each other by springs. On the contrary, the dynamics of shorter

polymers such as actin filaments [30], for which L ∼ `p, has been much less investigated

and is still not fully understood. Here, it is the subtle interplay of bending forces, thermal

fluctuations and internal tension under viscous loading that instead dictates the dynam-

ics. This distinguishes these filaments from long entropy-dominated polymers such as

DNA in which chain bending plays little role. The dynamics and conformational transi-

tions of these polymers and elastic filaments in viscous fluids also underlie the complex

non-Newtonian behavior of their suspensions [31]. The striking rheological properties of

polymer solutions hinge on the microscopic dynamics of individual polymers, and partic-
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ularly on their rotation, stretching and deformation under flow in the presence of thermal

fluctuations. Elucidating the physics behind these microstructural instabilities and tran-

sitions is key to unraveling the mechanisms for their complex rheological behaviors [32],

from shear thinning and normal stress differences [33] to viscoelastic instabilities [34] and

turbulence [35].

As highlighted throughout the above discussion, the dynamics of elastic filaments

and polymers requires modeling of their deformation, hydrodynamics in the low Reynolds

number regime and the thermal fluctuations. In the next chapter we delve into the de-

tailed hydrodynamic framework known as the ‘slender body theory’ particularly suitable

for modeling slender filaments and discuss associated geometrically nonlinear elasticity

theories. The rest of this chapter is devoted to outline the foundational principles that

come up in the following chapters. After discussing general properties of Stokes flow in

the next section we will briefly review Brownian motion and basic models for semiflexible

polymers.

1.1 Life at low Reynolds number

As discussed previously we are interested in studying dynamics of solid or de-

formable particles in viscous flow. The governing equations of motion are the classical

Newton’s laws for the particles and the Navier-Stokes equation for the suspending fluid

which is the continuum version of Newton’s second law applied to material points in the

fluid. We are interested in the limit of creeping flows where both the fluid and particle

inertia are negligible compared to the viscous forces. This can be translated in terms of

the Reynolds and Stokes number as:

Re =
ρUL

µ
→ 0, St =

mU

6πµL2
→ 0, (1.1)
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where ρ and µ are the density and viscosity of the suspending fluid, L and m are the

particle size and mass respectively, and U is a characteristic velocity scale of the particle

with respect to the fluid. It is instructive to note that for biopolymers the typical length

and velocity scales are L ∼ O(µm) and U ∼ O(µm/s). If we take water as the suspending

medium then the Reynolds number turns out to be O(10−5− 10−4). Similar scaling argu-

ments are true for swimming microorganisms [36] and various microfluidic applications [37]

where both the length and velocity scales involved are small. But this need not be the case

for the low Reynolds number approximation to hold true. For example, flows in glaciers

involve large length scales, but their velocity scales are extremely small, ∼ O(m/years) and

the flows typically have much higher viscosity, rendering the approximation of creeping

flow valid.

1.1.1 Stokes equation

In the limit of Re → 0 the Navier-Stokes equation simplify considerably and the

fluid motion is described by the following linear Stokes equation:

− µ∇2u+ ∇p = 0, ∇ · u = 0, (1.2)

where u(x) is the velocity field and p(x) is the pressure field that acts as a Lagrange multi-

plier in enforcing incompressibility. We notice that the governing equations do not involve

time. This suggests that unsteadiness in flow can only be a result of time-dependent forcing

or boundary conditions. Since the governing equations are linear the velocity field is always

proportional to the driving force, which makes the steady Stokes equation time reversible.

In other words a reversal in the direction of forcing reverses velocity field at all the points

instantaneously. This is wonderfully demonstrated in a classic experiment designed by

G.I. Taylor [38] and has profound consequences for the swimming of micro-organisms [36].

A number of physical problems can be understood based on these principles, and for an
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extensive discussion the interested reader is pointed to [39].

1.1.2 Resistance and mobility

A fundamental problem of interest in Stokes flow is obtaining the dynamics of a

single or collection of particles in a flow-field. This requires solving the Stokes equation

(1.2) subjected to the no-slip boundary condition:

u(x) = Uα + Ωα × x, for x ∈ Sα, (1.3)

where Uα and Ωα is the rigid-body translational and rotational velocity and Sα is the

surface of a given solid particle α. For the moment we restrict ourselves to dynamics

of rigid particles and avoid discussions of complex boundary conditions on deformable

surfaces like drops or bubbles [40]. Far away from the particles or walls the fluid velocity

must decay to the external flow field that is assumed to be known:

u(x)→ u∞(x) as |x| → ∞. (1.4)

If the particle motion is known, then we can solve (1.2) subject to the appropriate boundary

conditions. However in most cases the particle motions are unknown and it need to be

determined as part of the problem. For this we use Newton’s laws of motion for the

particles in the limit of zero Stokes number, which yields:

FH
α + F E

α = 0, TH
α + T E

α = 0, (1.5)

where FH,E
α and TH,E

α denote the hydrodynamic and externally imposed forces and torques

on the particles. The hydrodynamic forces and torques can be computed from the traction

as follows:

FH
α =

∫

Sα

σ(xα) · nαdSα, TH
α =

∫

Sα

xα × [σ(xα) · nα] dSα, (1.6)
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where σ = −pI + µ
[
∇u+ ∇uT

]
is the Newtonian stress tensor in the fluid. We now

notice that since the Stokes equations are linear, the velocity field u will be linear in the

forcing Uα. Sine the stress-tensor is linear in the velocity field the hydrodynamic force

FH
α will also be linear in the forcing Uα. One can argue along similar lines to establish

a linear relationship between the hydrodynamic torque TH
α and the angular velocity Ωα.

We exploit this to write the most-general relationship between the forces (or torques) and

velocity (or angular velocity) as:

FHα = −R · Vα, (1.7)

where FH = [FH ;TH ] and V = [U ; Ω] are six-dimensional vectors containing forces and

velocities. R is a 6× 6 matrix termed the resistance tensor. For an isolated axisymmetric

and isotropic particle the resistance matrix is diagonal which suggests that there is no

coupling between rotation and translation [39]. However for chiral objects this is often not

the case and the matrix is typically dense with off-diagonal terms that couple rotational

and translational motion. This coupling allows micro-organisms like E. Coli to translate

by rotating a helical flagella [36]. One can re-arrange Equation (1.7) to obtain:

Vα =M · FEα , (1.8)

where M = R−1 is the mobility matrix. As an illustrative example we note that a

spherical particle of radius a translating with a velocity U experiences Stokes drag given

by: FH = −6πµaU . The resistance matrix in this example is simply given by R = 6πµaI.

In many problems related to flows of particulate matter in Stokes flow it becomes pivotal

to compute the resistance or mobility tensors. In Chapter 2 we will compute the mobility

matrix for a deforming elastic filament and see how knowing these tensors allows one to

understand Brownian fluctuations.

7



1.1.3 The representation theorem

We now focus on an integral representation of the solutions to the Stokes equations.

This is obtained from the representation theorem that states: the velocity field at any point

inside a fluid domain can be represented in terms of the traction fields on the boundaries

of the domain. The theorem is a consequence of the linearity of the Stokes equation and

the derivation relies on generalized reciprocal theorem and fundamental solutions of the

Stokes equations [41, 42]. We avoid the details of the derivation and present the main

result here.

D
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Figure 1.1: Schematic of geometry considered for the representation theorem.

Consider a particle shown in Figure 1.1 with a surface ∂S that separates a finite

domain D from the space and n is the inward unit normal on ∂S. The representation

theorem allows us to express the velocity at any point in the domain in terms of two

convolution integrals on the surface ∂S. In index notation this is given by:

ui(x) = u∞i (x)− 1

8πµ

∫

∂S

Gij(x− ξ)fj(ξ)dS − 1

4π

∫

∂S

Tijk(x− ξ)uj(ξ)nk(ξ)dS, (1.9)

where f(ξ) = n · σ(ξ) is the traction on ∂S, G is the Green’s function for the velocity

field (also known as the Oseen-tensor) and T is the associated stress tensor:

Gij(x) =
δij
x

+
xixj
x3

, Tijk(x) =
1

2
[Gij,k(x) +Gik,j(x)] = −3

xixjxk
x5

. (1.10)
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A couple of comments are in order. The integral representation in Equation (1.9), some-

times known as the boundary integral equation, allows one to compute the velocity field

at any point in the domain with the knowledge of the traction and velocity on the surface

∂S. The integral equation representation is extremely useful since it reduces the dimen-

sionality of the problem by one. We can now compute three-dimensional field variables

by solving problems on two dimensional surfaces. This gives rise to a set of numerical

techniques known as the boundary element method [40]. In Chapter 2 we will see that

how for slender objects like elastic filaments or polymers the boundary integral equations

can be asymptotically reduced on a curve giving rise to the slender body theory.

Before closing our discussion on Stokes flow it is important to point out that the

Green’s function Gij provided in Equation (1.10) is valid for free space in three dimensions.

The associated velocity field known as the Stokeslet decays as ∼ 1/r. The derivatives of

this fundamental solution also satisfies the Stokes equation and can be combined together

to satisfy relevant boundary conditions. This gives rise to the so called singularity solution

method of Stokes flow [39].

1.2 Primer on selected topics

1.2.1 Brownian motion

Brownian motion or pedesis (meaning ‘leaping’) can be define as the random mo-

tion of particles suspended in a fluid resulting from their collision with the fast-moving

molecules in the fluid [43]. In the spirit of the botanist Robert Brown if one studies Brow-

nian trajectories of particles then these trajectories may appear random, uncorrelated and

with no mean transport. In soft-matter physics, as we will see in the thesis, Brownian

motion of fluid molecules is sufficient to perturb and cause deformation to soft materials.
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We reserve our discussion on Brownian polymers for the next section and instead highlight

here how to model thermal fluctuation or Brownian forces mathematically.

Consider a spherical particle of mass m and radius a immersed in a Newtonian fluid

bath. Its characteristic size a is very large compared to the size of the fluid molecules,

but is sufficiently small such that it is susceptible to Brownian motion. In order to study

its dynamics, one can follow an individual fluid parcels in a Lagrangian sense that are

bombarding the particle using Newton’s laws of motion. This is the fundamental ba-

sis of molecular dynamics simulation and can often be intractable due to computational

expenses. An alternative is to appreciate the scale separation between the size of the

particle and fluid molecules, and represent the effect of collisions of molecules in a con-

tinuum framework by an effective Brownian force [44]. This idea is made concrete by the

fluctuation-dissipation theorem of Statistical Mechanics that applies to system obeying

the principle of detailed balance. The theorem states that whenever there is a process

that dissipates energy, turning it into heat, there is a reverse process related to thermal

fluctuations. In the example at hand the random force that results in the erratic motion

of the particle in the fluid would also cause drag if the particle was pulled through the

fluid. In other words, the fluctuation of the particle at rest has the same origin as the

dissipative frictional force one must do work against, if one tries to perturb the system in

a particular direction.

The above idea is best captured through the Stokes-Einstein-Sutherland relation

that relates the diffusivity D of the immersed particle to its mobility M as:

D = kBTM, (1.11)

where kB is the Boltzmann constant and T is the absolute temperature of the suspending

fluid bath. For a spherical particle this simply translates to:

D =
kBT

6πµa
I. (1.12)
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The diffusion tensor is isotropic for a spherical particle, but the above relation is general

and can be applied to anisotropic shapes, it also holds true for rotational diffusion. We

now expect that the Brownian force fBr that mimics the effect of jiggling thermal motion

of the fluid parcels on the particle to have a zero mean as it stems from random collision

processes. The force is specified by its second moment that follows from the fluctuation-

dissipation theorem, and can be shown to obey:

〈fBr(t)〉 = 0, (1.13)

〈fBr(t)fBr(t′)〉 = 2kBTM−1δ(t− t′), (1.14)

where 〈(.)〉 denotes ensemble average [44]. In Chapter 2 we will see that how the above

relation can be adapted to specific models of semiflexible polymers like actin to describe

their shape fluctuations.

1.2.2 Semiflexible polymers

Polymers are macromolecules. A lot of detailed theories have been devoted to

developing models of polymers that are perfectly flexible or completely rigid. String like

floppy polymers are sensitive to Brownian fluctuations and can be modeled as freely-

jointed chains that approximate the polymer as a random walk. On the other end of this

spectrum are rigid rod-like molecules that only have orientational diffusion without any

shape fluctuations [14]. However a large number of biopolymers in the cell cytoskeleton

are somewhere in between these two limits, and this is the main focus of this thesis.

For these biological polymers elasticity play a crucial role. Typically the energy

associated with deformation of these polymers is comparable to the thermal energy. As a

result the Brownian fluctuations act to deform the backbone of these soft objects. There

is an energy penalty associated with bending these elastic filaments [45]. The energetic

cost is larger for shorter or stiffer bends compared to longer sweeping deformations. As a
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result, fluctuation-induced deformations are most evident at larger length scales than at

smaller scales. This is illustrated in Figure 1.2 that shows a schematic of conformation

of an elastic thread. We observe that due to bending energy at the molecular scale the

polymer behaves like a rigid rod, but when we zoom out the chain appears flexible. This

behavior is termed as semiflexiblity and these polymers are known as semiflexible polymers.

Figure 1.2: Conformation of a semiflexible polymer at different length scales. Image
borrowed from [1].

Theoretical modeling of a single semiflexible polymer remained a non-trivial sta-
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tistical mechanics problem and was first answered by Kratky and Prod in 1949 [46] for a

discrete setup. The continuous version of the Kratky-Porod model is known as the worm-

like-chain (WLC). In this model the polymer is parametrized as a space curve x(s) in terms

of the arc-length s. Associated with this is a energy penalty in bending or Hamiltonian,

given as:

EB =
B

2

∫ L

0

|xss|2ds, (1.15)

where B is the bending rigidity, L is the length of the polymer and the functional is

quadratic in local curvature. The tangent-tangent correlation function for this model can

be computed analytically, yielding:

〈xs(s) · x(s′)〉 = exp

[
−(s− s′)

`p

]
, (1.16)

where `p = B/kBT is called the persistence length of the polymer. In other words the

persistence length is a length scale over which the polymer looses memory of its tangent

correlation. Alternatively for a chain of length L = `p the characteristic bending energy

B/`p is comparable to thermal fluctuations kBT [47]. The limit `p/L� 1 corresponds to

rigid rods, as deformations are highly correlated, and the limit `p/L � 1 mimics flexible

chains. Another useful property that can be analytically computed for WLC is the mean-

square end-to-end distance:

〈
R2
〉

= 2`2
p

(
e−L/`p − 1 + L/`p

)
. (1.17)

From the above relation it is evident that for `p/L→∞ we have 〈R2〉 → L2 as expected

for a rigid rod. On the other hand for `p/L → 0 we have 〈R2〉 → 2`pL. This is the limit

of a flexible polymer, and the expression for mean-squared end-to-end distance is identical

to that of a freely-jointed chain performing a random walk.

It is to be noted that for DNA molecules the contour length L ∼ O(µm − mm)

while the persistence length is `p ∼ 50 nm. As a result these chains are predominantly
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entropic, preferring coiled conformations, and bead-spring models are well suited when

one is interested in length scales larger than the persistence length. On the other hand for

microtubules and actin filaments with B ∼ O(10−26 Nm2) we have L ∼ `p [48]. As a result

we need to account for both elasticity and thermal fluctuations. We will explore in the

subsequent chapters how the interplay between classical elastic instabilities and Brownian

shape fluctuations lead to non-trivial filament dynamics.

1.3 Overview of present work

This work tries to broadly address two set of problems involving dynamics of elastic

filaments. One set of problems involves understanding the behavior of passive filaments

that are transported, rotated and deformed by a competition of three forces: viscous, elas-

tic and thermal. We try to develop theoretical models to understand their morphologies

and long-time transport properties that are crucial for suspensions and design of chromato-

graphic devices. The second set of problems involves the study of active micro-filaments.

These elastic fibers are non-Brownian but their dynamics is dictated by stochastic active

molecular processes that drive them out of equilibrium. Understanding active polymer

dynamics is a fundamental challenge in biophysics, and our study particularly sheds light

on the hydrodynamics of cilia and flagella.

Chapter 2 develops much of the theoretical and computational framework used in

this thesis in a pedagogical manner. Based on our qualitative discussion of Brownian fluc-

tuations and polymers in this chapter we try to understand simple scaling laws of Brownian

rods in shear flows and polymers in equilibrium. We also perform two numerical stretch-

ing experiments of semiflexible polymers that highlight some key mechanical properties of

these Brownian filaments.

Chapter 3 and 4 are centered on understanding morphologies of actin filaments in
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two canonical flows: shear and compression. In particular we develop dynamical models

and nonlinear elastic theories that explain for the first time several morphological transi-

tions associated with buckling instabilities of semiflexible polymers. These two chapters

incorporate the central idea of how conformations and mechanics of soft materials are

interlinked, and highlights the subtle role of viscous loading competing with thermal and

elastic forces.

Having studied passive filaments we move on to model active polymers in Chapter

5 and 6. For the first time, we propose a microscopic bottom-up model of the axoneme, the

internal structure of cilia and flagella. We show that due to the action of molecular motors

there can be dynamic bifurcations leading to spontaneous oscillations in elastic filaments

that mimic the beating patterns of various ciliated micro-organisms, and elucidate the role

of hydrodynamics in their collective behavior.

Chapter 7 and 8 are focused on transport of polymers and passive Brownian tracers

in structured lattices that serve as idealization of porous media. DNA gel electrophoresis is

a classical method to sort DNA strands according to their length from a mixture. Chapter

7 extends this idea to semiflexible polymers where we explore transport properties of these

filaments in a 2D porous media and finally highlight a possible design of chromatographic

device. Chapter 8 is in some sense a digression since it focuses on transport of Brownian

tracers in 1D lattice. However it embodies the idea of understanding asymptotic transport

properties in viscous flow and highlight the role of peristalsis in the context of classical

Taylor dispersion.

We finish with concluding remarks and possible future direction in Chapter 9.
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Chapter 2

Elasticity, hydrodynamics and

fluctuations of slender structures

2.1 Introduction

As discussed in Chapter 1 the dynamics of flexible filaments or more generally

slender structures in viscous flow are quite ubiquitous with applications in rheology and

biophysics. This chapter primarily discusses various aspects of theoretical mechanics and

Brownian motion relevant for the thesis in a pedagogical manner. The discussion covers

three main aspects. First, we will focus on elasticity of beams and rods that can be used

to model dynamics of deformable filaments with a primer on the elementary differential

geometry of curves. Then we will move on to discuss hydrodynamics of slender structures in

viscous flow where we will outline the main results of the ‘slender-body-theory’ and discuss

associated numerical methods. Finally we will talk about a set of problems related to

understanding thermal fluctuations of Brownian filaments and associated scaling theories.

This part is in the spirit of works on scaling theories of polymer by de Gennes [49], but

will primarily focus on semi-flexible filaments. Discussions from this chapter will help us
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to develop physical intuitions of several phenomenons which will facilitate discussions in

the upcoming chapters.

2.2 Elasticity of slender structures

A slender structure is a quasi-one-dimensional elastic body whose extent in one

direction is much larger than in the two perpendicular (cross-sectional) directions. There

is a rich history of literature in elasticity that deals with dynamics of such one-dimensional

continua. However there are a very few pedagogical notes or books that develop the theory

of mechanics of slender structures and their interesting behaviors in a self-contained way.

Derivations are often lengthy, cumbersome and complicated. This section attempts to

discuss the bare minimum of elasticity keeping things self-contained and clearing various

terminologies. Much of the following discussion is borrowed and inspired from the book of

Audoly and Pomeau [50], the chapter by Audoly in [49] and finally from a recent paper [51].

We start with a brief review of kinematics of deformation and geometry of curves. Then

we discuss the fundamental difference between materials with nonlinear constitutive laws

and geometric nonlinearities. We then derive the governing equation of a particular one-

dimensional model of elastic curves, namely the Euler elastica, from variational principles

and discuss its static and dynamics. Finally we conclude with a brief discussion on the

statics and dynamics of Euler buckling and morphologies of elastic filaments.

2.2.1 Preliminary continuum mechanics

Consider a solid object with a regular rectangular grid drawn on it at time t = 0

which we term as its ‘reference condition’. With respect to some global co-ordinate system

we identify any material point on this reference configuration by a Lagrangian marker

X. Now after a period of deformation this regular rectangular grid has transformed. In
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this ‘current configuration’ the material point previously identified as X is now given by

x(X, t) as shown in Figure 2.1. We can associate a displacement field or map with this

material description that is given by u(X, t) = x(X, t) −X. Associated with the map

that takes the object from the ‘reference configuration’, Ω(0) to its ‘current configuration’,

Ω(t), one can define a deformation gradient tensor as follows:

Fij(X, t) =
∂xi(X, t)

∂Xj

. (2.1)

⌦(0)
<latexit sha1_base64="oDY7z+crG3AA7WHUC76oBnzP+pU="></latexit>

⌦(t)
<latexit sha1_base64="u38I++/XOgn9yBxKt3a+EQQbBDE="></latexit>

X
<latexit sha1_base64="WmVHVRrOktVUJGHroqxKpDkYmBM="></latexit>

x(X, t)
<latexit sha1_base64="YYbG54g7VhC9S6u0bKyXqZJz18c="></latexit>

Figure 2.1: Schematic of a solid object deforming from its reference condition Ω(0) to its
current configuration Ω(t).

It is straight-forward to see that line elements in Ω(t) are related to that in Ω(0)

by

dxi = FijdXj. (2.2)

Usually when we think of strain we are interested in the magnitude of the deformation of

elemental lengths. For a step towards that let us first evaluate the magnitude of elemental

lengths in Ω(t). We have:

|dx| =
√
δijdxidxj =

√
δijFimdXmFjldXl =

√
dXmFimFildXl. (2.3)

In the final expression shown above the following tensor appearsCml = FimFil. In Gibbs

notation this is written as C(X, t) = FT · F and we term this tensor as the right Cauchy-
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Green deformation tensor. It is now straight forward to see that the difference in elemental

lengths between the two configurations are related by

dx2 − dX2 = (Cij − δij) dXidXj. (2.4)

We define the Green-Lagrange strain tensor, simply referred to as strain tensor hereafter

as εij = 1
2

(Cij − δij). It is often convenient to think and derive expressions in terms of

the displacement field u(X, t) instead of the deformation gradient tensor [52]. They are

related to each other by the following relation:

∂ui
∂Xj

= Fij − δij. (2.5)

Using the above result in the expression for the strain tensor we find:

εij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
. (2.6)

It is also evident from the above expression that the strain tensor is symmetric. Physically

the strain-tensor characterizes local deformations near a point X in the solid through a

displacement field u(X, t) and by construction it vanishes for rigid-body rotations and

translations. It is also important to appreciate that the strain tensor in terms of displace-

ment is nonlinear due to the presence of quadratic terms. Since the components of the

strain-tensor are dimensionless, their magnitude has an absolute meaning. In particular

we would say that the strain is small if |εij| � 1. We will see in subsequent discussions

that how ‘small strain’ has ramifications in the elastic response of a material. However for

now we conclude our discussion on kinematics.

Before moving on to discussions on material response and nonlinearities we briefly

review geometry and kinematics of space curves that provide a convenient mathematical

framework to describe quasi one-dimensional elastic objects. In this thesis we will represent

the centerline of elastic filaments as one-dimensional space curves embedded in Euclidean
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space E3 as shown in Figure 2.2. Why we chose to do so is discussed later and for the

moment we simply focus on the geometry.

s
<latexit sha1_base64="oWsVKn/KWDnpo+428cRt8Tryqac="></latexit>

s = 0
<latexit sha1_base64="ZH+AE6gpYrpi7c+8lYbKQ0Jk68A=">AAADpHicbZJNb9NAEIa3MR8lfLVw5LIiAnGIIhuQ4AKqBIceUFVaklaKQ7Vej5NV98P1jtNGln8B4gq/jX/DOrEorBnJ3tE8M9L7jibJpbAYhr+2esGNm7dub9/p3713/8HDnd1HE2vKgsOYG2mK04RZkELDGAVKOM0LYCqRcJKcf2j4yRIKK4z+gqscZorNtcgEZ+hKx/ZdeLYzCEfhOmg3idpkQNo4PNvtfYtTw0sFGrlk1k6jMMdZxQoUXELdj0sLOePnbA5Tl2qmwM6qtdaaPnOVlGamcJ9Guq7+PVExZe1KJa5TMVxYnzXFYaL+i5sKGiOtpwGzt7NK6LxE0HwjISslRUObldBUFMBRrlzCeCGcC8oXrGAc3eL6sYZLbpRiOq3iJMvqqnloVtceKltSdsiyJcsOmbRk4hN1ULuf88OZrA58Wi55PY1m1aYlyap4wZAOorpu3GmBS2fIFEOaGJnSS4EL6hqGVBukVjKNkHpCLlohFx2JVy258gk4hZBbIY32SArSTcUfQSJzcx24+gNXHuSLa9t039/JkYOJut7LkfPrzjfyj7WbTF6Oolej6PPrwd779pC3yRPylLwgEXlD9sg+OSRjwsmcfCc/yM/gefApOA7Gm9beVjvzmPwTwdffGro5xw==</latexit>
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<latexit sha1_base64="JcGiLvfcnRVerDyzRngOTIZanvw="></latexit>

x(s, t)
<latexit sha1_base64="IAem1T3Dp9ePWcnYLgWUxTAPA0c="></latexit>

Figure 2.2: Schematic of a space curve embedded in E3 and parameterized by arc length
s. The Frenet-Serret triad is shown on the curve.

This curve has a length L and is parameterized by the arc-length s ∈ [0, L]. At

any instant of time, position along the curve is identified by a Lagrangian marker x(s, t).

The unit tangent vector to the curve at any point is simply defined by ∂sx ≡ t̂ and it

follows that ∂sx · ∂sx = 1. Differentiating the last relation we find ∂ssx · ∂sx = 0. This

points to the fact that the vector ∂ssx is perpendicular to the tangent vector and we

define ∂ssx = κ(s)n̂ where κ(s) is the curvature and n̂ is called the unit normal vector.

As the name suggests κ(s) measures the local tendency of a space curve to form bends (or

curvatures) and is zero for a straight line. The unit tangent and the unit normal vector
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together defines what is known as the osculating plane of athe curve. In order to form a

triad of vectors at any point along the curve that can span E3 we define b̂ ≡ t̂× n̂, as the

binomal vector that points perpendicular to the osculating plane. The orthonormal basis

vectors {t̂, n̂, b̂} are related to each other by the Frenet-Serret formulas

∂

∂s




t̂

n̂

b̂




=




0 κ 0

−κ 0 τ

0 −κ 0







t̂

n̂

b̂



, (2.7)

where τ(s) is the torsion of the curve that serves as a measure of deviation of the curve

from the local osculating plane. For an entirely planar curve τ(s) is identically zero. The

Frenet-Serret frame has several subtle issues associated with non-uniqueness of the triad

when κ = 0, but we won’t delve into that and will point the interested reader to a detailed

discussion to [53].

2.2.2 Hookean elasticity and geometric nonlinearities

When considering equilibria or dynamics of elastic objects, we need to think of

stress. For a deforming object in equilibrium the sum of external forces is zero. The

balance of internal stress then leads to Cauchy’s equation:

∂σij
∂xj

+ ρgi = 0, (2.8)

where σij is the stress tensor and gi is a body force per unit volume. The dynamic

description is completed or closed by prescribing a relationship between the stress and the

displacement field or strain which is known as the constitutive law of the material. For

isotropic material undergoing small strain, the stress is proportional to the strain which

forms the basis of Hookean or linear elasticity. Throughout this thesis we will restrict

ourselves to the case of Hookean or linear elasticity. However the aim of this discussion
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is to stress and highlight the distinction between small strain and small displacement. It

is evident that if the displacement field u(X, t) defined in previous section is small then

x ≈ X and the strain |εij| � 1. However the converse is not true as the strain depends

only on the gradient of the displacement field and not on its absolute value. As a result

one can have finite and large displacements or rotations that are perfectly compatible

with small strains [54]. This introduces what is known as geometric nonlinearities and is

at the heart of the theories described in this thesis. Figure 2.3 provides a few examples

where geometric nonlinearities with large deformations lead to a number of interesting

observations. We will cover one such geometrically nonlinear 1D continuum model known

as the Euler elastica in great detail.

(a)
<latexit sha1_base64="Mw8L0K3gcfvqxb09TwBbe2JHOjk="></latexit>

(c)
<latexit sha1_base64="X1bSQAv37xDRJfTPQnAi9P9jbxA="></latexit>

(b)
<latexit sha1_base64="l10UovAC2F1Orgrlo7QRHdVmG3k="></latexit>

Figure 2.3: Examples of geometric nonlinearities in nature: (a) Simulations with discrete
Kirchoff rods are used to model curly human hairs in computer graphics [55]. (b) Formation
of persistent perversions in slinky [56]. (c) The leaves of Paphiopedilum orchid exhibits
Godet patterns and ripples. Image from [57].

2.2.3 Euler elastica

Elastica is the Latin for a thin strip of elastic material [58]. The planar Euler elastica

has a simple curvature dependent bending energy that makes it appealing as a model of a

one-dimensional continuum. It has been used to model a variety of physical systems such

as from thin beams, structural cables, polymers and biological macromolecules [59], and
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will be the fundamental model for various fluid-structure interaction problems explored in

this thesis. We will look at two complementary approaches to derive governing equations

for the elastica. The first one is in the spirit of Cosserat rod theories of classical continuum

mechanics [60] and will be restricted to the planar case [54]. In the second approach we will

look into a variational treatment of the problem and discuss related boundary conditions

for a three dimensional elastic curve [51].

Geometry and constraints: Before getting into the dynamics it is convenient

to discuss some preliminary geometry. For an undeformed elastica with its centerline

parameterized as a space curve the tangent vector has unit magnitude with |xs| = 1. A

convenient measure of stretching of the filament (or strain) can be to see the departure of

this magnitude from unity, and can be defined as [54]:

ε =
1

2
(xs · xs − 1). (2.9)

We also define a measure of shear as:

γ = xss · xs. (2.10)

The shear γ vanishes when the transverse material vector remains perpendicular to the

tangent at the centerline. As discussed in previous sections, we are interested in small

strain theories that are limited to |ε| � 1 and |γ| � 1. We will go one step ahead in the

following discussion and limit ourselves to un-shearable and inextensible elastic rods with

γ = 0 and ε = 0. We justify the inextensibility condition in the next paragraph. If the

filament remains inextensible the arc-length serves as a material description of the curve

or elastic rod, which is why it is convenient to parametrize relevant quantities in terms

of s. It is worth pointing out that we are in the special limit of zero strain and all the

constitutive relations remain linear.

Stretching vs bending: Consider a slender rod of diameter a and length L.
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Suppose we apply some force to stretch the filament in the x direction with typical dis-

placement in the order of u. In the sense of scaling the strain is then given as ε ∼ ∂xu.

The associated axial stress scales as σS ∼ Y ∂xu where Y is the Young’s modulus and the

subscript S is for stretching. We can then estimate the typical energy required per unit

length to stretch the rod as ES ∼ a2σS∂xu ∼ Y a2u2/L2.
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Figure 2.4: Schematic showing stretching and bending of a slender elastic rod.

We can carry out the same calculation to estimate the typical bending energies if

we want to create a transverse displacement of the same order. The typical curvature

induced by these displacements are κ ∼ ∂2
xu. Noting that the bending rigidity of a rod

B ∼ Y a4 the bending energy per unit length scales as EB ∼ Bκ2 ∼ Y a4u2/L4. We can

now compare the ratio of bending and stretching energies and we find:

ES
EB
∼
(
L

a

)2

� 1. (2.11)

Since a/L� 1 for a slender elastic rod the energy required to stretch a rod is much larger

compared to the energy required to bend it. This is easily appreciated if we try to stretch

one of our strands of hair while it is very easy to bend it. For filaments in this thesis

a/L ∼ 10−2 − 10−3 and thus it is very reasonable to assume that the the filaments are

inextensible. In viscous flow one can show that the time-scale of relaxation of stretching

modes is much faster than that of the bending modes, and thus in a dynamic situation it

is the bending modes that govern the emergent behaviors [58].

Derivation à la Cosserat rods: Here we present a simplified derivation of the
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governing equation of inextensible, unshearable planar elastic rods [61]. The rod is in the

x − y plane and is in equilibrium when acted on by external forces and moments with

force density f(s) and moment density n(s). We now balance forces and moments along

the centerline of the filament over an arbitrary segment s ∈ [s1, s2]. The ‘contact’ forces

and moments of the rod is denoted by F (s) and M (s) respectively. The internal bending

moment M (s) is in the out of plane direction and can be written as M (s) = M(s)ẑ.
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Figure 2.5: Schematic showing force and moment balance for an inextensible, un-
shearable, planar elastic rod.

Force and moment balance in the elemental area demands:

0 =

∫ s2

s1

f(s)ds+ F (s)
∣∣∣
s2

s1
, (2.12)

0 =

∫ s2

s1

[x(s, t)× f(s) + n(s)] ds+ [x(s, t)× F (s) +M (s)]
∣∣∣
s2

s1
. (2.13)

Under Leibniz rule and noting the fact that bending moments act in the z direction only

we can simply the balance laws to:

0 = f +
∂F

∂s
, (2.14)

0 = (n+ xs × F ) · ẑ +
∂M

∂s
. (2.15)
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The above equations govern the dynamics of the rod in equilibrium. In order to close

the system of governing equations we need a constitutive law. For an Euler elastica the

bending energy EB ∼ κ2 where κ is the curvature. This leads to the linear constitutive

law that M = Bκ where B is the bending rigidity. Typically the force densities that act

on the filament can be due to viscous stresses or gravitational forces or electrostatic forces

due to charge distributions. In this thesis we are interested in viscous stresses and will

revisit this formulation later on while discussing hydrodynamics.

Variational treatment: We start by noting that the bending energy of a filament

is given by:

EB =
B

2

∫ L

0

|xss|2ds. (2.16)

We can incorporate the constraint of inextensibility through a Lagrange multiplier σ(s)

and define an Energy functional given by:

E =
1

2

∫ L

0

[
B|xss|2 + σ(s) (xs · xs − 1)

]
ds. (2.17)

We can now perform variation of the above functional under a small shift of position

x→ x+ δx. Upon successive integration by parts the first order variation yields:

δE =

∫ L

0

δx ·
[
B∂4

sx− ∂s(σ∂sx)
]

ds+
[
B∂2

sx · ∂sδx+
(
σ∂sx−B∂3

sx
)
· δx

] ∣∣∣
L

0
. (2.18)

Setting this variation to zero for arbitrary δx gives us the bulk field equation:

B∂4
sx− ∂s(σ∂sx) = 0. (2.19)

If we had a force per unit length acting on the filament as before then that would have

balanced this bulk stress. This will be the case for dynamics of these filaments in a viscous

fluid. The boundary terms from the variation provides the boundary condition of the
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problem. For a filament that is free at both ends we have:

σ∂sx−B∂3
sx = 0, at s = 0, L (2.20)

B∂2
sx = 0, at s = 0, L. (2.21)

For a detailed discussion on various boundary conditions the interested reader is pointed

to [51,54]. We will list the relevant boundary conditions considered in this thesis later on

while discussing the viscous dynamics of the slender structures.

Comment on 3D elastica: The models of biopolymers presented in this thesis

center around the elastica both in two and three dimensions. Besides having curvatures in

three dimension, a filament can have torsion as discussed previously. Typically one would

account for penalties in energy due to both torsion and curvature. Kirchoff rods [50,60] for

energetic contributions of different modes like twisting and bending of an elastic rod and

is probably more appropriate for three dimensional problems. However we do not include

these in our formulations and restrict ourselves to the simpler energetic form.

2.2.4 Aspects of buckling instabilities

Chapter 3 and 4 of this thesis are centered around buckling of biopolymers in two

canonical flow setups. Here we briefly discuss the main features of the classical Euler

buckling instability and helical buckling of twisted elastic rods that become relevant in

the subsequent chapters. Euler buckling is concerned with the simplest example of elastic

instability of a rod subjected to longitudinal compressing forces. In the absence of trans-

verse bending forces the equilibrium equations have the solution of x(s) = sŷ. This gives

rise to a stable equilibrium of a rod remaining straight with an internal tension σ(s) = |P |,

where P < 0 is the compressing force. However this solution becomes unstable beyond a

critical value of Pcr and any infinitesimal small perturbation leads to a large bending (or

deformation) of the rod to a buckled state via a supercritical pitchfork bifurcation. The
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resulting shape resembles the letter C. A schematic along with the bifurcation diagram

is shown in Figure 2.6(a). As the longitudinal force increases, one excites higher-order

buckling modes with more wave-numbers. The critical force at the onset is given by

Pcr = α
π2B

L2
, (2.22)

where α is a numerical prefactor whose value depends on the specific choice of boundary

condition.
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Figure 2.6: (a) Supercritical pitchfork bifurcation giving way to buckled configurations.
(b) Schematic of a typical helical buckling setup with tensile forces and end moment. (c)
Plant root undergoing helical buckling [62].

Helical buckling of elastic rods is another classical instability that has been studied
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in the context of loop formation in twisted cables [63, 64], buckling of oil-drills [65, 66]

and is relevant for problems related to growth driven morphologies of plant roots [62].

In these set of problems a rod is acted by a tensile (or compressional) axial force Q and

is also subjected to twist or end moments M as illustrated in Figure 2.6(b). Beyond a

critical value of the twisting moment the straight twisted configuration of the filament

becomes unstable and the rod subsequently attains a helical shape. The bifurcation can

be subcritical as well as supercritical depending on specific boundary conditions. This

is an illustration of coupling of bending and twisting modes in three dimension and is

a result of the fact that helical configurations provide favorable energy landscapes. We

refrain from the mathematical treatment of such instabilities and the interested reader is

pointed to [50,67]. We will re-visit this problem in an hydrodynamic setup where we will

illustrate that how helical conformations can emerge without twisting moments.

2.3 Hydrodynamics of slender structures

The dynamics of elastic filaments and rods in a Stokesian fluid has a special struc-

ture for which a number of mathematical and computational tools have been developed.

Examples of such methods include the classical immersed-boundary-method (IBM) [61,68],

bead-rod and bead-spring models [69, 70], regularized Stokeslet formulation [71–73] and

mesoscale methods such as dissipative particle dynamics or multi-particle collision dynam-

ics [74]. A discussion and review of all such methods and formulation is beyond the scope

of this thesis. Here we discuss the hydrodynamics described by slender-body-theory which

is an asymptotic reduction of the boundary integral equations described in the previous

chapter for a slender object.
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2.3.1 Non-local slender body theory

Consider a cylindrical filament of length L as shown in Figure 2.7 with a cross-

sectional diameter a such that ε = a/L� 1. Like before the centerline of this filament is

parametrized by arc length s. This slender structure is placed in an unbounded Stokesian

fluid with a background velocity u∞(x). We are interested in computing the velocity field

of the fluid u(x) that satisfies the Stokes equation subjected to the boundary condition:

u(x) =





US, for x ∈ ΩS

u∞(x). for |x| → ∞
(2.23)

In the above equation ΩS is the surface of the filament. Formally if we know the surface

traction for the filament then it is possible to evaluate the velocity field at any point using

the boundary integral formulation.

a
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Figure 2.7: Schematic of a cylindrical slender object with diameter a and length L.

However one can go one step further exploiting the slenderness of the particle.

The fundamental idea in slender-body-theory (SBT hereafter) for Stokes flow is that the

disturbance (motion) due to the presence of the body is approximately the same as that

due to a suitably chosen distribution of Stokeslets distributed along the centerline of the
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filament. Batchelor [75] derived the approximate form of the strength of the Stokeslet

distribution that will satisfy the boundary conditions for rigid body motions. However,

when we permit the filament to have arbitrary deformation and velocities, additional care

needs to be taken. In particular, close to the filament the flow is similar to that past a

cylinder and constitutes what is known as an ‘inner solution’. This inner flow is matched

asymptotically to the ‘outer solution’ of far field u∞(x). This form of the SBT is inherently

non-local and is due to Keller and Rubinow [76]. Johnson [77] improved the accuracy by

carefully accounting for the ends, and Götz [78] established a connection of non-local

operators to Legendre polynomials. An alternative approach to derive the SBT equations

relies on reductions of the full boundary integral equation to the centerline of the filament

with ε being the small parameter [79].

As discussed in previous sections often one knows the force-density exerted by a

flexible filament on the fluid from its elasticity. This force per unit length f(x(s), t) that is

exerted by the filament on the fluid can be interpreted as the azimuthally-averaged surface

traction that depends on its instantaneous configuration. Far from the filament at some

point x0, the leading order velocity field is given by:

u(x0) = u∞(x0)−
∫ L

0

G[x0 − x(s′)] · f(x(s′))ds′, (2.24)

where G[x0 − x(s′)] is the appropriate Greens function and is simply the Stokeslet in

free-space. It is appealing to evaluate the self-induced velocity of the filament centerline

xt from the above integral taking x0 → x(s, t). However this naive evaluation gives rise

to logarithmically divergent integrals as there remains a singular piece over which the 1D

approximation breaks down. Using careful matched asymptotic expansions as suggested

previously [76–78] one finds the following form of the centerline velocity:

8πµ(xt(s, t)− u∞) = −Λ[f(x(s, t))]−K[f(x(s, t))], (2.25)
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where Λ and K are called the local and non-local operator that we define below and µ

is the viscosity of the fluid. The above version of the SBT is accurate up to (ε2 ln ε)

provided certain conditions on the variation of transverse radius a along the arc-length is

satisfied [77]. For a circular filament the accuracy is smaller but we avoid such technical

subtleties. The local operator is given by:

Λ[f(s)] = [(2− c)I− (c+ 2)xsxs] · f(s), (2.26)

where c = − ln(ε2e) < 0 is an asymptotic parameter that depends on the aspect ration of

the filament. This local operator accounts for the drag anisotropy of slender objects in

Stokes flow that we discuss later on. The non-local operator is given by:

K [f(s)] =

∫ L

0

[
I + R̂ (s, s′) R̂ (s, s′)

|R (s, s′)| · f(s′)− I + xs(s)xs(s)

|s− s′| · f(s)

]
ds′, (2.27)

where R(s, s′) = x(s) − x(s′) and R̂ = R/|R|. This integral is often called a finite part-

integral and is singular at s = s′. This accounts for the self-induced velocity of the filament

or hydrodynamic interactions between different parts. We will discuss later on how to solve

the integro-differential equation numerically treating the singular integrals appropriately.

While eqn (2.24) provides the far-field approximation of the induced velocity field, a more

accurate representation is given by

u(x0) = u∞(x0)− 1

8πµ

∫ L

0

[
I +R(s′)R(s′)
|R(s′)| +

ε2

2

I − 3R(s′)R(s′)
|R(s′)|3

]
· f(s′)ds′, (2.28)

where R(s′) = x0 − x(s′). In the above integral the first term is a contribution from the

Stokeslet and the second term is due to a distribution of source doublets. The contribution

from the doublets become only important at length scales of O(ε). Unless specified we

will restrict ourselves to the simpler far-field representation of the velocity field as given in

(2.24). We close the discussion by pointing out that the SBT can be interpreted as a force-

mobility relationship. In particular we can represent eqn (2.25) as xt(s) = u∞(s)+M·f(s)
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where M = −Λ − K is the mobility matrix. This interpretation becomes useful in the

later sections when discussing thermal fluctuations.

2.3.2 Special case: local SBT

Here we consider the special case of the SBT where we neglect the non-local terms

associated with long-range hydrodynamic interactions. This leads to the leading order

local anisotropic drag model. The local terms of the SBT operators are O(ln ε) and the

non-local terms are of O(1). While the approximation remains crude the local SBT and

its variants have been widely used for theoretical analysis of dynamics of flexible fibers.

We can re-write the local operator in the following manner:

Λ[f(s)] = [(2− c)(I− xsxs)− 2cxsxs] · f(s). (2.29)

From the above expression one can define local anisotropic friction coefficients as

ζ‖ = − 1

2c
and ζ⊥ =

1

2− c. (2.30)

In the limit of infinitely slender rods one recovers what is popularly known as resistive

force theory with ζ⊥/ζ‖ → 2. In this limit the governing equations are further simplified

to:

xt(s) = u∞(x(s)) +
1

8πµ
(I + xsxs) · f(s). (2.31)

While the above expression is accurate to O(1), one can make a lot of analytical progress

because of its simple form. We will revisit this formulation for the linear stability of elastic

rods in compressional flows.

2.3.3 Brownian filaments

In order to proceed with the dynamics of filaments, we need to prescribe the force

density f(s) appearing in the equations of SBT. As discussed previously, here we will use
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the model of an Euler elastica or Euler-Bernoulli beam [80,81] for the elasticity. A number

of problems presented in this thesis involve semi-flexible polymers that are subjected to

Brownian fluctuations. As a result along with the typical elastic forces we will have

contributions from stochastic Brownian forces as well. The general form of the force

density for an inextensible semi-flexible polymer is given by:

f(s, t) = Bxssss − (σxs)s + fBr. (2.32)

In the above expression fBr is a stochastic Brownian force that obeys the fluctuation

dissipation theorem:

〈fBr(s, t)〉 = 0, (2.33)

〈fBr(s, t)fBr(s′, t′)〉 = 2kBTM−1δ(s− s′)δ(t− t′), (2.34)

where δ(x) is the Dirac’s delta function andM is the mobility operator defined previously.

2.3.4 Nondimensionalization and boundary conditions

The length scale of the problem scales with the filament length L. The flow time

scale is given as u∞(x) ∼ γ̇L where γ̇ is a shear rate. For non-Brownian filaments it is

convenient to use γ̇−1 as the time scale of the problem. However for Brownian filaments it

is appropriate to introduce the relaxation time scale τ ∼ 8πµL4/B. This is a characteristic

timescale over which bending modes of a filament relax [82]. We notice that the elastic

force scale per unit length is set by bending and scales as B/L3. We will see later on that

typical length scales of transverse fluctuations of a Brownian filament is r⊥ ∼ L
√
L/`p.

Considering this, the Brownian forces per unit length is scaled as fBr ∼
√
L/`pB/L

3 [83].
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Upon invoking the following scalings the dimensionless governing equation becomes:

xt(s) = µ̄u∞(x(s)) +M · f(x(s)), (2.35)

f(x(s)) = xssss − (σxs)s +

√
L

`p
η. (2.36)

In the above expression M is the mobility matrix defined by slender-body-theory and η

is the dimensionless thermal fluctuation satisfying:

〈η(s, t)η(s′, t′)〉 = 2M−1δ(s− s′)δ(t− t′). (2.37)

The nondimensionalization results in two dimensionless number. The first one is called

the elasto-viscous number and is defined as:

µ̄ =
8πµγ̇L4

B
. (2.38)

This can be interpreted as the hydrodynamic forcing of the problem and shows a strong

dependence on the length of the polymer. We can also interpret it as a competition between

the time scale of bending relaxation to that imposed by the background flow. The other

dimensionless number is `p/L that characterizes the strength of thermal fluctuations in

the problem with the limit `p/L � 1 corresponding to that of Brownian rods. If the

hydrodynamics is given by the local SBT then it is appropriate to define the elasto-viscous

number as: µ̄ = 8πµγ̇L4/(Bc) where c = − ln(ε2e) is the geometric factor that dictates the

local friction coefficient of filament.

We reserve our discussion on computational methods to solve the evolution equa-

tions for the next section and conclude the present section by a discussion on appropriate

boundary conditions for the problem in different setups. For a filament that is free at both

ends the boundary terms of the variation of energy functional in eqn (2.18) requires:

σ(s = 0) = σ(s = 1) = 0, (2.39)

xss = xsss

∣∣∣
s=0,1

= 0. (2.40)
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These boundary conditions simply mean that the filament is force and moment free. We

now consider two additional cases of filaments that are clamped or hinged at one end.

Without any loss of generality we assume the end s = 1 to be free where we have σ = 0

and xss = xsss = 0. In the fixed end of the filament we have by construction x(s = 0) = 0.

Here we have conveniently placed the origin at s = 0. (i) A hinged filament is free to rotate

and is moment free so additionally we have xss(s = 0) = 0. (ii) A clamped filament however

cannot rotate and is thus not moment free. Typically the tangent vector at the clamping

point remains fixed in a particular direction. Thus the boundary condition translates to

xs(s = 0) = ê, where ê is the unit vector along which the tangent points. However the

boundary condition for the tension σ at the fixed end is non-trivial and has been calculated

incorrectly in a number of problems in the literature [84]. The condition can be obtained

by realizing that the velocity of the filament at the fixed end is identically zero. In the

context of local SBT demanding xt(s = 0) translates to

2cσsxs + (c− 2)σxss − (c− 2)x(4)
s − (c+ 2)(xs · x(4)

s )xs

+

√
L

`p
[(2− c)η − (c+ 2)xs(xs · η)] = 0 at s = 0.

(2.41)

We can project the above equation on to the tangential direction xs(s = 0) to obtain the

appropriate boundary condition for tension. Noting the identity that xs ·x(4)
s = −3xss ·xsss

and recalling that for a hinged filament xss(s = 0) = 0 we obtain:

σs(s = 0) =

√
L

`p
(η · xs)

∣∣∣
s=0

, (hinged filament) (2.42)

σs(s = 0) =

[√
L

`p
(η · xs) + xs · x(4)

s

]∣∣∣∣∣
s=0

. (clamped filament) (2.43)

Note that for a non-Brownian filament η = 0 and the expressions simplify considerably.

The relevant boundary conditions are illustrated pictorially for this case in Figure 2.8.
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Figure 2.8: Schematic of boundary conditions at the fixed end of a non-Brownian filament
with (a) hinged and (b) clamped conditions. At the free end we always have xss = xsss = 0
and σ = 0.

2.4 Computational methods

In the previous section we have outlined the foundations of SBT and discussed

appropriate boundary conditions for relevant problems. The computational method to

solve the evolution equation for the centerline motion follows closely previous formulations

[81, 85]. Here we briefly outline the primary aspects and point the interested reader to

previous references for further details.

2.4.1 Discretization and tension

Since the filament is inextensible the arc-length is a material description and we

discretize it uniformly. For simulations presented here we typically use N = 128 points with
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the spacing between points being ∆s = 1/(N − 1). The linear operators are represented

using second order accurate finite difference approximations [81].

In order to proceed with the time evolution of the filament conformation we first

need to determine the unknown tensions σ(s) that acts as a Lagrange multiplier imposing

inextensibility. Given any conformation of the filament, this unknown tension can be

solved for by deriving an auxiliary equation from the constraint of inextensibility. From

inextensibility we have: xs · xs = 1. Differentiating this with respect to time we obtain:

∂txs · xs = 0 =⇒ xs ·
∂

∂s
[µ̄u∞(s)−M · f(s)] = 0. (2.44)

Upon invoking a series of identities from differential geometry of curves and expanding the

mobility operator we arrive at the following second order linear differential equation for

the tension:

2cσss + (2− c)σ|xss|2 − xs ·
∂

∂s
K[(σxs)s] = µ̄xs · u∞ + (2− 7c)(xss · x(4)

s )

− 6c|xsss|2 − xs ·
∂

∂s
K[x(4)

s −
√
L/`pη]+

2c

√
L

`p
(xs · ηs) + (2 + c)

√
L

`p
(xss · η).

(2.45)

The above equation is solved with the appropriate boundary condition as discussed in

previous section. For the non-local SBT the linear system for the unknown tension resulting

upon discretization is dense. Solution with a direct solver requires O(N3) operations. On

the other hand, for a local SBT the linear system is tridiagonal and one can employ fast

solvers to solve in O(N) complexity. During computations it is common to encounter

round-off errors and the inextensibility is not exactly satisfied by the computed tension.

To overcome this problem one can add a heuristic term −β(1− xs · xs) on the right hand

side of the tension equation [81]. This term is identically zero if inextensibility is exactly
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satisfied. Otherwise this term acts like a spring that penalizes for extensibility and thus

the parameter β is called the penalty parameter [68, 81].

2.4.2 Time marching

The fourth order derivative of the Lagrangian marker x with respect to s stemming

from bending forces make the equations of motions extremely stiff. In order to overcome

severe time-step restrictions we use a second order accurate time scheme that treats the

linear stiff terms implicitly and the non-linear terms explicitly. Schematically one can

write the evolution equation as:

xt = F (x,xssss) +G(x). (2.46)

The terms in F involve expressions with xssss and will be treated implicitly. Suppose ∆t

is the time step and tn = n∆t. Then the above decomposition is used to give

1

2∆t

(
3xn+1 − 4xn + xn−1

)
= F

(
2xn − xn−1,xn+1

ssss

)
+ 2G (xn)−G

(
xn−1

)
. (2.47)

This system is accompanied by appropriate boundary conditions which for free filaments

translate to xss = xsss = 0 at s = 0, L. The above discretization yields a band-diagonal

matrix for the unknown xn+1 that can be inverted efficiently at the cost O(N). It is

interesting to note that in absence of the non-local interactions the solution to the problem

can be done in O(N) operations as the equation for tension is tridiagonal. However in

presence of hydrodynamic interactions the computational cost increases to O(N3) details

of which can be found in [81,85].

2.4.3 Treatment of Brownian forces

We know that the Brownian fluctuations have zero mean and a variance that is

prescribed by the fluctuation dissipation theoremby eqn. (2.37). Numerically this can be
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approximated as follows:

η =

√
2

∆s∆t
B ·w, (2.48)

where B =
√
M−1 and w is a Gaussian random vector with zero mean and unit variance.

∆s and ∆t are the resolution of the spatial and temporal discretization respectively. In the

presence of hydrodynamic interactionsM is a dense matrix and computing the square root

is an O(N3) operation that requires approximations using Cholesky decomposition [86].

Recently there has been significant developments in evaluating this using efficient iterative

solvers such as the Lanczos algorithm [87]. However one does not gain significantly unless

the system size is sufficiently large. The problems presented in this thesis are restricted

to smaller size of N = 64–256 and for fast solution we introduce an approximation. We

approximate the square root as follows:

B =
√

(Λ + K)−1 ≈
√

Λ−1. (2.49)

This approximation is not entirely correct as we retain the non-local operator in our

formulation but do not include it in the evaluation of Brownian fluctuations. However

this approximation allows us analytically compute the square root of the local resistance

matrix which yields:

B =
√

Λ−1 =
1√

2− c

[
I +

(√
c− 2

2c
− 1

)
xsxs

]
. (2.50)

There are a couple of other subtle aspects associated with Brownian polymers. The so-

lution to the unknown line tension involves taking spatial derivatives of the Brownian

noise. However η is uncorrelated in space and time and is not differentiable. In order to

obtain numerically stable solution we follow [85] and remove the large wave-numbers of

the noise by designing a ‘low-pass-filter’ that allows us to obtain numerical derivatives.

However unlike [85] we do not rescale the filtered noise to preserve variance as this leads

to introducing back the energy of the removed modes.

40



Inclusion of thermal fluctuations also severely restricts the allowable time-steps in

the problem. Since the Brownian fluctuations are inversely proportional to the square

root of the time step, the accuracy of the solution is reduced to first order in time. In this

case, on can indeed choose to use an EulerMaruyama time stepping method instead of the

second order accurate backward difference method discussed in the previous section.

2.4.4 Interactions and recent developments

Previously we have discussed about tools and methods for single filament dynam-

ics. We close our discussion with some remarks on modeling and simulation of multiple

filaments that interact with each-other hydrodynamically. Consider M fibers indexed by

α = 1, 2, · · · ,M . For any filament α, the equation of motion to the leading order takes the

following form:

8πµ [∂tx
α − u∞(xα(s, t))] = −Λ[fα](s)−K[fα](s)−

M∑

β=1,β 6=α
Gβ[xα], (2.51)

where the contribution of the other filaments at a point x̄ = xα(s, t) is accounted as:

Gβ[x̄] =

∫

Γβ

[
I + R̂(s′)R̂(s′)
|R(s′)|

]
· fβ(s′)ds′. (2.52)

In the above expression R(s) = x̄−xβ(s) and R̂ is the associated unit vector. This simply

states that to the leading order interactions in free-space are accounted by Stokeslets. One

would choose the appropriate Greens function depending on specific cases. Typically due

to te finite size of the slender object, there are also contributions from a distribution of

source doublets that scales as ε2/r3 and is neglected in the above expression [81]. One may

be tempted to think that to leading order the interactions decay as 1/r due to the nature

of Stokeslet interactions which is indeed the case in problems involving sedimentations

where long range hydrodynamic interactions lead to various instabilities [88,89]. However
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for force-free filaments the interactions decay as 1/r2 and are dominated by doublet con-

tributions. This can be appreciated from an integration by parts of the interactions and

by noticing that the force density f(s) is a total derivative of the arc-length [81].

Simulations with multiple filaments are computationally expensive. For M fibers

with N discretization points, evaluation of hydrodynamic interaction mounts to a matrix

vector multiplication that costs O(M2N2). This quadratic dependence becomes the main

bottleneck in evaluating direct sums for large system size. Apart from classical Stokesian

dynamics [90], SPME techniques in periodic domain [91], there have been significant recent

developments that extend ideas of Fast Multipole Method (FMM) [92] for Stokes kernels

[93] and the evaluations can be done in O(MN) operations. As a part of ongoing work we

will discuss later how some of these ideas can be incorporated to study problems involving

long-range interactions in a bed of flexible filaments.

2.5 Brownian motion in slender structures

The previous discussions have outlined key aspects of elasticity and hydrodynamics

of slender objects. We have also discussed how Brownian fluctuations can be incorporated

in the model and dealt with numerically. In this section we focus on various physical phe-

nomenon and simple scaling arguments that illustrate how Brownian motion can introduce

rich physics into various problems ranging from the dynamics of rigid rods to semi-flexible

polymers.

2.5.1 Dynamics of Brownian rods

The simplest possible example of a slender structure is a rigid rod that serves as a

model of an object whose persistence length `p is much larger than its contour length L.

While a rigid rod is a theoretical idealization, its orientational dynamics in the presence of
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flow does provide practical means to understand microstructure and rheology of structures

fluids [14,94–96]. We reserve discussions on rheology for the next chapter and instead focus

here on some results based on scaling arguments that describe the orientation dynamics

of a rod in a simple shear flow. We will see in subsequent chapters that this study serves

as a benchmark for understanding how hydrodynamics, shape-fluctuations and elastic-

instabilities modify dynamics of semi-flexible polymers.

We focus on the case of a fore-aft symmetric and axisymmetric rod, in which case

the translational and rotational degrees of freedom are decoupled from one another. We

can then describe the rod by the position of its center of mass and an orientation vector p

that lives on the unit sphere. The slowest relaxation process in a dilute suspension of rods

is rotational diffusion. The rotational diffusivity can be defined as the inverse of a time

scale over which a rigid rod forgets about its orientation due to Brownian fluctuations.

From typical friction coefficients of rods in viscous flow, one can employ Stokes-Einstein

relation to obtain the rotary diffusivity which is given by

dr =
3kBT ln(2/ε)

πµL3
, (2.53)

where ε = a/L is the aspect ratio of the rod. In absence of any external flow the rod

samples all possible configuration on the unit-sphere and the equilibrium distribution is

isotropic.

Let us now consider the other limit of a non-Brownian rod in a simple shear flow.

In this case the rods exhibit periodic tumbling behavior similar to Jeffery orbits for an

ellipsoidal particle [97].
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Figure 2.9: Typical orbits of prolate spheroids in simple shear flow for different orbit
constants.

Periodic orbits in three dimension are characterized by an orbit constant C and the

time period of such periodic orbits is given by:

T =
2π

γ̇

(
ε+

1

ε

)
. (2.54)

As illustrated in Figure 2.9, the limit of C →∞ corresponds to tumbling confined in the

plane of shear while the limit C → 0 corresponds to rolling motion on a plane perpendicular

to the shear plane. In 2D the orientation of the rod is characterized by the angle θ with

the horizontal plane whose evolution is given by:

θt = −γ̇ sin2 θ +O(ε2). (2.55)

This simple equation helps us to appreciate a few scaling laws that we discuss below.

When both Brownian motion and flow are present there is a competition between the time
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scale set by the external flow that tries to align the filament with the time scale set by

rotational diffusion. The dynamics in this case is characterized by a single dimensionless

number called the rotary Pèclet that compares shear to diffusion, defined as:

Per = γ̇/dr. (2.56)

For a shear flow in the x− y plane the orientational dynamics of the rigid rod is described

by a Langevin equation that results from the balance of Brownian and hydrodynamic

torques. It is given by

ṗ = py (êx − pxp) +

√
2

Per∆t
(I− pp) ·w, (2.57)

where w is a Gaussian random vector with zero mean and unit variance. In 2D the leading

order Langevin equation takes a simple form:

θt = −γ̇ sin2 θ + ξ(t), (2.58)

where 〈ξ(t)ξ(t′)〉 = 4drδ(t− t′). If ξ = 0 the system has a fixed point at θ = 0 which means

that the rod simply tumbles and aligns with the zero shear plane and remains there.

However a nonzero ξ corresponds to a bifurcation where the filament gets stochastically

kicked out of the zero-shear plane that forces it to perform tumbling. A natural question

that comes up is how does the frequency of such tumbling scales with the flow strength?

It turns out that when the rod is aligned with the zero-shear plane its dynamics

is dominated by Brownian fluctuations. In 2D it is possible to show that at an angle

θ = θ0 ∼ (dr/γ̇)1/3 there is a balance of advective fluxes from rotation due to flow and

Brownian diffusion [30]. As illustrated in Figure 2.10 the regime θ < θp is dominated by

diffusion. The typical time spent by the rod in this regime is given by:

τdiff ∼ θ2
p/dr ∼ d−1/3

r γ̇−2/3. (2.59)
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Figure 2.10: Diffusion and advection dominated regimes of a rigid rod tumbling in 2D
shear flow.

The regime θ > θp is dominated by advection and we can get an estimate of the

time spent in this regime by simply integrating the equations of motion in absence of

Brownian fluctuations. On doing so we obtain:

τadv ∼
∫ π−θp

θp

dθ

γ̇ sin2 θ
=

2

γ̇ tan θp
∼ d−1/3

r γ̇−2/3, (2.60)

where we have used the approximation tan θp ∼ θp. Now it is straightforward to compute

the frequency of tumbling. It is given as

ν =
1

τadv + τdiff
∼ γ̇2/3. (2.61)

This is a classic result and in dimensionless form simply states ν ∼ Pe2/3
r [98]. We will re-

visit this result in next chapter and discuss how buckling instabilities of flexible polymers

modify this scaling.

2.5.2 Scaling laws for semi-flexible filaments

We know from our discussions in Chapter 1 that long-chain polymer molecules like

DNA are typically entropic with `p � L. For semi-flexible polymers like actin, L ∼ `p and
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we have a interplay between elasticity and Brownian fluctuation. Following our discussion

on rigid rods here we outline some key features in terms of scaling of a fluctuating semi-

flexible polymer in a Newtonian solvent.

Static properties: For a filament with length L . `p the filament remains nearly

straight with small transverse fluctuations. We let the x axis define the average orientation

of the filament and use a single transverse co-ordinate u(x, t) for simplicity as illustrated

in Figure 2.11. For small transverse fluctuations the bending energy can be represented

as:

EB =
B

2

∫ L

0

(
∂2u

∂x2

)2

dx. (2.62)

We now represent the transverse fluctuations in terms of a Fourier decomposition:

u(x, t) =
∑

q

uq(t) sin(qx), (2.63)

where q is simply the wavenumber [99]. The above Fourier representation is valid for a

filament with fixed ends having u = 0 at x = 0, L with q = nπ/L, where n = 1, 2, 3 · · · .

On invoking orthogonality of the Fourier modes the bending energy can be represented as

sums of the Fourier modes as:

EB =
BL

4

∑

q

q4u2
q . (2.64)

We now notice that that there is a quadratic dependence of the energy on u2
q and one can

invoke the principle of equipartition of energy. On doing so, we obtain:

〈u2
q〉 =

2kBT

BL

1

q4
≡ 2

L`p

1

q4
. (2.65)

Thus the expected value of the ensemble averaged transverse mode fluctuation is obtained

by performing a sum over all wave-numbers and in scaling terms is given as:

〈u2〉 ∼ L3

`p
. (2.66)
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Figure 2.11: Schematic of a fluctuating filament. The figure shows the transverse coordi-
nate and the longitudinal compression due to Brownian fluctuations.

Recall that while discussing non-dimensionalizing the SBT, we used the same scal-

ing as above for Brownian forces without explaining its origin. For an inextensible chain

the end-to-end contraction of the chain due to presence of transverse fluctuations is given

by:

∆L =

∫ L

0



√

1 +

∣∣∣∣
∂u

∂x

∣∣∣∣
2

− 1


 dx ≈ 1

2

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx =
L

4

∑

q

q2u2
q . (2.67)

Invoking the previous result on transverse fluctuations we find,

〈∆L〉 ∼ L2

`p
. (2.68)

Dynamic properties: In the above we have considered static properties of indi-

vidual polymer chains. The dynamics of semiflexible filaments help us appreciate various

results on relaxation times and evolution of end-to-end distance. As before, considering

small transverse fluctuations. The equation of motion for u(x, t) in the over-damped limit

is given by:

ξ⊥
∂u

∂t
= −B∂

4u

∂x4
+ η⊥, (2.69)

where ξ⊥ ≈ 4πµ/ ln(2/ε) is the friction coefficient in the transverse direction and η⊥ is the

Brownian noise projected onto u(x, t). Representing u(x, t) in terms of its Fourier series

and performing an ensemble average we obtain

ξ⊥

〈
duq
dt

〉
= −Bq4〈uq〉, (2.70)
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where the noise drops out due to averaging. The above expression hints to us that the

characteristic relaxation time of a bending mode is:

ω(q) ∼ µ

Bq4
. (2.71)

The quartic dependence on the wavenumber stands out in the above expression for relax-

ation time. This means that if a mode of wavelength 1µm takes 10−3 s to relax then a

mode of wavelength 10µm will take 100 s. This results in a large time scale separation

on the problem which makes it difficult for any numerical method to capture all the time

scales of the problem. In any problem, typically the longest wave-lengths have the largest

amplitude and the typical conformations of the filament is dominated by them. This ex-

plains why we chose the longest relaxation time τ to non-dimensionalize the governing

equation of the SBT.

With this simple scaling arguments we can predict a few more interesting results.

After time t the dominant mode relaxes over a distance [100,101]:

`⊥(t) ∼
(
Bt

µ

)1/4

. (2.72)

As seen before the magnitude of transverse fluctuations increases with length. Thus at

any time t, the expected mean-squared transverse motion is given by,

〈u(t)2〉 ∼ `⊥(t)3

`p
∼ t3/4 (2.73)

The dynamics of longitudinal motion can be computed similarly. Here, however, we must

account for the fact that the mean-square longitudinal fluctuations 〈δ`(t)2〉 of a long fila-

ment involve the sum (in quadrature) of independently fluctuating segments along a full

filament of length L. The typical size of such independently fluctuating segments at time

t is `⊥(t), of which there are L/`⊥(t). We have previously computed the average extension

in (2.68). Using that result we find,

〈δ`(t)2〉 ∼ L

`⊥(t)

`⊥(t)4

`2p
∼ t3/4. (2.74)
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This result tells us about the scaling of the mean-squared-displacement of the end-to-end

distance of a polymer before it saturates [83, 102]. We have reproduced such dynamic

scaling laws for validation of our numerical method [85].

2.6 Suppression of fluctuations

In the previous section we have outlined various static and dynamic scaling laws for

semi-flexible polymers. We end this chapter by discussing the most elementary problem

in polymer physics: stretching a fluctuating filament by applying force. The 1970s and

1980s saw the advent of various advanced biochemical methods for manipulating single

moleculesoptical tweezers [103] and atomic-force microscopy [104] that provided tools to

investigate the mechanical behavior of flexible polymers. Historically most of the initial

studies focused on long chain polymer molecules like DNA where work done by external

forces went in reducing the conformational entropies of the chain. DNA chains were either

pulled by magnetic beads from one end by holding the other end fixed [105] or an anchored

filament was stretched out by electric field or external flow [106, 107] from which it was

possible to obtain force-extension relations. For small forces these polymers behaved like

a linear spring that can be reconciled with the entropic nature and a freely jointed chain

model [95]. However for strong forces one needs to account for the bending stiffness as in

a worm like chain (WLC) model presented in the previous section to obtain the correct

force-extension behavior [108,109].

On the other hand stiff biopolymers like actin have not received much attention

and there are few systematic studies on how hydrodynamic or external forces iron out

fluctuations. In the following discussion we present two canonical problems that highlight

the process of suppression of fluctuation and briefly mention a few questions that are yet

to be resolved.
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Figure 2.12: End-to-end fluctuations of actin filaments in extensional flow. Simulations
are compared against experimental results of [2] and from [3].

2.6.1 Actin in extensional flow

We will consider a semiflexible filament placed in a 2D stagnation point flow with its

center at the stagnation point. This can be realized in a cross-slot microchannel as studied

in [2] with the external flow being given by u∞ = ε̇ (x,−y, 0), where ε̇ is the extension rate.

More recently helical buckling of actin filaments was studied in a hyperbolic channel [8].

While this is the focus of Chapter 4, it is important to highlight that in the convergent

part of an hyperbolic channel the flow is also well described by the 2D stagnation point

flow approximations. In such a setup the flow tries to stretch the filament along it’s axis.

For sufficiently strong flow or equivalently large µ̄ the fluctuations are suppressed. To
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quantify this we introduce the variance of the fluctuations defined as:

V (x) =
〈
[h(x)− h̄(x)]2

〉
, (2.75)

where h(x) is the transverse co-ordinated of the filament and h̄(x) is the mean-shape. We

have used x as the parameterizing co-ordinate which is accurate in the limit of strong flow

and weak fluctuations. The Figure 2.12 shows the re-scaled variance of the end points

from our simulations and two different experiments with Vee = [V (0) + V (L)]/2. From

our discussion on scaling argument for transverse fluctuation we know that a rescaling by

`p/L
3 will collapse all the data as done in Figure 2.12.

In weak flow the filament does not feel hydrodynamic forces and it’s end-to-end fluc-

tuation remains fairly constant and close to what one expect in absence of flow. However as

the hydrodynamic drag increases we observe that fluctuations are strongly suppressed and

decrease monotonically with µ̄. Our simulation results are in partial agreement with [2]

in weak flow. Due to long filaments used in [3] the µ̄ is much larger and covers a regime

unexplored in [2]. Our simulations compare very well with the experiments in strong flows

as seen in Figure 2.12. A simple theory to predict the end-to-end fluctuation was proposed

in [2] based on the Monge representation of the filament. While the theory that relies on

an eigenfunction expansion of the fluctuations on an appropriate basis [85] predicts the

right trend in the behavior it does not agree quantitatively with simulations and experi-

ments. Finally it is instructive to estimate in scaling sense the drag force experienced by

the filament when there is complete suppression of fluctuation at large µ̄. For a filament

that is almost straight the viscous force is given by Fv ∼ µ̄B/16L2 ∼ 0.8−1.8pN. In other

words one needs to apply a distributed force of this magnitude in order to straighten the

fluctuating filament.
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2.6.2 Pulling from the ends

We now consider another canonical problem in which we pull the filament from

two ends by applying a force. There are various versions and flavors of this experiment.

Examples include holding one end of the filament fixed and pulling the free end by magnetic

forces, or pulling both ends of the filament by optical tweezers in harmonic traps. We

consider the case when an external force F = F êx is applied along the x axis of the

filament at the two end points. A shematic of this numerical experiment is shown in

Figure 2.13. For our 3D simulations this translate to the following boundary conditions:

xss = 0, s = 0, L (2.76)

− (Bxsss − σxs) = −F êx, s = 0 (2.77)

Bxsss − σxs = F êx, s = L (2.78)

where the first equation prescribes the moment-free condition and the last two states the

balance of forces. On exploiting the first boundary condition it is possible to obtain the

boundary condition for tension as: σ(0, L) = −F êx · xs(0, L).

x
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Figure 2.13: Schematic of a polymer getting pulled from two ends.

While stretching the filament the force does work on the system. We can write an

effective Hamiltonian for the problem that combines the bending energy and this work. It

is given by:

H =
B

2

∫ L

0

|xss|2ds− F · [x(L)− x(0)] ≡
∫ L

0

[
B

2
|xss|2 − F êx · ∂sx]

]
ds. (2.79)
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In the limit of strong-force F � B/`2p the filament is almost straight. In this limit it is

possible to simplify the work done by the force considerably. For the planar problem the

calculation is outlined in a pedagogical manner in [110]. Using the equipartition theorem

or calculations based on path integrals, it is possible to obtain the expression for mean

axial extension in 2D. For large forces this is given as [110]:

〈x(L)− x(0)〉 ≡ 〈∆x〉 ≈ L

[
1− 1

4
√
f`p

coth

(
L

`p

√
f`p

)
+

1

4f`p

`p
L

]
, (2.80)

where f = F/kBT . We can compute the extension from 3D Brownian simulations as

well. The comparison between the 2D theory given by eqn (2.80) and the 3D simulations

are shown in Figure 2.14. We find an excellent comparison between the theory and the

simulations in the strong force limit when the fluctuations are mostly suppressed. The

typical magnitude of force required for suppressing fluctuations was found to be O(0.5 −

1) pN.
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Figure 2.14: Force extension curve for an actin filament with `p/L = 1.8.
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2.7 Conclusions

In this chapter we have outlined the fundamentals of elasticity and hydrodynam-

ics of slender flexible filaments. The tools developed in this chapter form the backbone

of the upcoming discussions on various specific problems related to filaments in flows.

We have also outlined the role of Brownian forces in introducing shape fluctuations and

various analytical results related to stretching and pulling a filament by forces or flows.

These theoretical and numerical experiments allow us to probe and understand mechanical

properties polymers, and will help us to develop simple models in the upcoming chapters.
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Chapter 3

Morphological transitions and

rheology of actin in shear flow

3.1 Introduction

In the previous chapter we laid the foundations for the theoretical and computa-

tional tools to study the dynamics of semi-flexible filaments in flows. Our discussions on

elasticity of slender structures suggested that inextensible elastic beams can buckle in the

presence of compressive viscous forces leading to formation of strongly deformed structures.

These deformations change various scaling laws for tumbling of rigid rods in simple shear

and have the potential to fundamentally alter rheological properties of suspensions. In this

chapter we combine microfluidic experiments with theoretical and numerical modeling to

study morphologies of actin filaments in simple shear and reveal their role in emerging

rheology.

The case of long-chain polymers such as DNA [23], for which the persistence length

`p is much smaller than the contour length L, has been characterized extensively in ex-

periments [22, 24] as well as numerical simulations [25] and mean-field models [26]. The
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dynamics in this case is governed by the competition between thermal entropic forces

favoring coiled configurations and viscous stresses that tend to stretch the polymer in

strain-dominated flows. The interplay between these two effects is responsible for the

coil-stretch transition in elongational flows and tumbling and stretching motions in shear

flows, both of which are well captured by classic entropic bead-spring models [27–29].

On the contrary, the dynamics of shorter polymers such as actin filaments [30], for

which L ∼ `p, has been much less investigated and is still not fully understood. Here, it

is the subtle interplay of bending forces, thermal fluctuations and internal tension under

viscous loading that instead dictates the dynamics. Indeed, bending energy and thermal

fluctuations are now of comparable magnitudes, while the energy associated with stretch-

ing is typically much larger due to the small diameter of the molecular filaments [31] as

discussed in the previous chapter. This distinguishes these filaments from long entropy-

dominated polymers such as DNA in which chain bending plays little role.

In the previous chapter we have discussed the classical case of a rigid rod tumbling

periodically in shear flow [97], now known as Jeffery orbits. When flexibility becomes sig-

nificant, viscous stresses applied on the filament can overcome bending resistance and lead

to structural instabilities reminiscent of Euler buckling of elastic beams [2, 81, 111–115].

On the other hand, Brownian orientational diffusion has been shown to control the char-

acteristic period of tumbling [30, 116]. In shear flow, the combination of rotation and

deformation leads to particularly rich dynamics [30, 83, 117–121], which have yet to be

fully characterized and understood. Here we elucidate these dynamics in a simple shear

flow [7]. The filaments we consider here have a contour length L in the range of 4− 40µm

and a diameter a ∼ 8 nm. By analyzing the fluctuating shapes of the filaments, we mea-

sured the persistence length, as shown in [48], to be `p = 17 ± 1µm independent of the

solvent viscosity. We combine fluorescent labeling techniques, microfluidic flow devices and
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an automated-stage microscopy apparatus to systematically identify deformation modes

and conformational transitions. Our experimental results are confronted against Brown-

ian dynamics simulations and theoretical models that describe actin filaments as thermal

inextensible Euler-Bernoulli beams whose hydrodynamics follows nonlocal slender-body

theory [81]. The experiments had access to planar conformations of the filament that are

in the focal plane of the microscope. To this end, we restrict the simulations also to be

planar, which results in better quantitative agreement. By varying the contour length as

well as applied shear rates in the range of γ̇ ∼ 0.5–10 s−1, we identify and characterize

transitions from Jeffery-like tumbling dynamics of stiff filaments to buckled and finally

strongly bent configurations for longer filaments.

3.2 Polymer dynamics and conformations

3.2.1 Governing parameters and key features

In 2.3.4 we outlined the control parameters of a semi-flexible filament in flow. Here

we briefly review the dimensionless numbers for consistency. The filament dynamics results

from the interplay of three physical effects – elastic bending forces, thermal fluctuations

and viscous stresses, and is governed by three independent dimensionless groups. First,

the ratio of the filament persistence length `p to the contour length L characterizes the

amplitude of transverse fluctuations due to thermal motion, with the limit of `p/L →

∞ describing rigid Brownian fibers. Second, the elasto-viscous number µ̄ compares the

characteristic time scale for elastic relaxation of a bending mode to the time scale of the

imposed flow, and is defined in terms of the solvent viscosity µ, applied shear rate γ̇,

filament length L and bending rigidity B as µ̄ = 8πµγ̇L4/B. Third, the anisotropic drag

coefficients along the filament involve a geometric parameter c = − ln(ε2e) capturing the
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effect of slenderness, where ε = a/L.

The elasto-viscous number is the main control parameter of the problem and can

be interpreted as the dimensionless measure of the flow strength. By varying L and γ̇, we

have systematically explored filament dynamics over several decades of µ̄ and observed a

variety of filament configurations, the most frequent of which we illustrate in Figure 3.1.

Figure 3.1: Temporal evolution of filament shape in planar shear over one period of motion,
showing three representative cases corresponding to increasing elasto-viscous number. In
each case, we compare fluorescence images from experiments (E) to Brownian dynamics
simulations (S).

In relatively weak flows, the filaments are found to tumble without any significant

deformation in a manner similar to rigid Brownian rods, is to the description in 2.5.1.
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On increasing the elasto-viscous number, a first transition is observed whereby compres-

sive viscous forces overcome bending rigidity and drive a structural instability towards a

characteristic C shaped configuration during the tumbling motion. By analogy with Euler

beams, we term this deformation mode ‘global buckling’ as it occurs over the full length

of the filament. In stronger flows, this instability gives way to highly bent configurations,

which we call U turns, that are akin to the snaking motions previously observed with flexi-

ble fibers [30,118]. During those turns, the filament remains roughly aligned with the flow

direction while a curvature wave initiates at one end and propagates towards the other end.

At yet higher values of µ̄, more complex shapes can also emerge, including an S turn which

is similar to the U turn but involves two opposing curvature waves emanating simultane-

ously from both ends. In all cases, excellent agreement is observed between experimental

measurements and Brownian dynamics simulations. Our focus here is in describing and

explaining the first three deformation modes and corresponding transitions.

3.2.2 Characterization of temporal dynamics

We characterize the temporal shape evolution more quantitatively for each case

in Figure 3.2. In order to describe the overall shape and orientation of the filament, we

introduce the gyration tensor, or the second mass moment, as

Gij(t) =
1

L

∫ L

0

[ri(s, t)− r̄i(t)][rj(s, t)− r̄j(t)] ds, (3.1)

where r(s, t) is a two-dimensional parametric representation of the filament centerline with

arclength s ∈ [0, L] in the flow-gradient plane, and r̄(t) is the instantaneous center-of-mass

position. The angle χ between the mean filament orientation and the flow direction is

provided by the eigenvectors of Gij, while its eigenvalues (λ1, λ2) can be combined to

define a sphericity parameter ω = 1− 4λ1λ2/(λ1 + λ2)2.
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Figure 3.2: Evolution of the sphericity parameter ω, mean angle χ with respect to the flow
direction, bending energy E and scaled end-to-end distance Lee/L over one period of motion
for (a) Jeffery-like tumbling, (b) C buckling, and (c) U turn. Symbols: experiments. Solid
lines: simulations. Parameter values are the same as in Figure 3.1. The lack of experimental
data during the interval ∆γ̇t ∼ 30 in (a) is due to a temporary loss of focus caused by
tumbling of the filament out of the flow-gradient plane.

The sphericity parameters quantifies the filament anisotropy: ω ≈ 0 for nearly
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isotropic configurations (λ1 ≈ λ2), and ω ≈ 1 for nearly straight shapes (λ1 � λ2 ≈

0)/ Other relevant measures of filament conformation are the scaled end-to-end distance

Lee(t)/L = |r(L, t) − r(0, t)|/L, whose departures from its maximum value of 1 are in-

dicative of bent or folded shapes, and the total bending energy E(t) = B/2
∫ L

0
κ2(s, t)ds,

which is an integrated measure of the filament curvature κ(s, t). As is evident in Fig-

ure 3.2, these different variables exhibit distinctive signatures in each of the three regimes

and can be used to differentiate between configurations systematically. During Jeffery-like

tumbling, filaments remain nearly straight with ω ≈ 1, Lee ≈ L and E ≈ 0 while the angle

χ quasi-periodically varies from −π/2 to π/2 over the course of each tumble. During a C

buckling event, the angle χ still reaches π/2, but the other quantities now deviate from

their baseline as the filament bends and straightens again. This provides a quantitative

measure for distinguishing tumbling motion and C buckling. During a U turn, however,

deformations are also significant, but χ deviates only weakly from 0 as the filament remains

roughly aligned with the flow direction and executes a tank-treading motion rather than

an actual tumble. This feature provides a simple test for distinguishing C and U turns in

both experiments and simulations. Other hallmarks of U turns are the increased bending

energy during the turn, which exhibits a nearly constant plateau while the localized bend

in the filament shape travels from one end to the other, and a strong minimum in the

end-to-end distance Lee(t), which reaches nearly zero halfway through the turn when the

filament is symmetrically folded.

3.2.3 Order parameters

This descriptive understanding of the dynamics allows us to investigate transitions

between deformation regimes as the elasto-viscous number increases. The dependence on

µ̄ of the maximum bending energy E, minimum value of the sphericity parameter ω, and
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range ∆χ of the mean angle over one or several periods of motion is shown in Figure 3.3.

In the case of U turns, the maximum bending energy is calculated as an average over

the plateau seen in Figure 3.2(c). In the tumbling regime, deformations are negligible

beyond those induced by thermal fluctuations, as evidenced by the nearly constant values

of max(E) ≈ 0 and min(ω) ≈ 1.

Figure 3.3: Dependence on elasto-viscous number µ̄ of: (a) the maximum value of the
bending energy E, (b) the minimum value of the sphericity parameter ω, and (c) the range
∆χ of the mean angle in the various tumbling and deformation regimes. Full symbols:
experiments; open symbols: simulations. For experimental data, the measurement error in
µ̄ (due to errors in contour length (±0.5µm) and in local shear rate (±0.1 s−1)) is comparable
to the marker size.
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After the onset of buckling, however, the maximum bending energy starts increas-

ing monotonically with µ̄ as viscous stresses cause increasingly stronger bending of the

filament. This increased bending is accompanied by a decrease in ω as bending renders

shapes increasingly isotropic, finally reaching min(ω) ≈ 0. Interestingly, the transition

to U turns is marked by a plateau of the bending energy, which subsequently only very

weakly increases with µ̄. This plateau is indicative of the emergence of strongly bent con-

figurations where the elastic energy becomes localized in one sharp fold, and suggests that

the curvature of the folds during U turns depends only weakly on flow strength. The

parameter ω also starts increasing again after the onset of U turns, as the filaments adopt

hairpin shapes that become increasingly anisotropic. Figure 3.3(a,b) also shows a few data

points for S turns at high values of µ̄: in this regime, the maximum bending energy is

approximately twice that of U turns, as bending deformations now become localized in

two sharp folds instead of one. S shapes are, however, more compact than U shapes and

thus show lower values of ω. Orientational dynamics are summarized in Figure 3.3(c),

showing the range ∆χ = χmax − χmin of the mean angle χ over one period of motion.

During a typical Jeffery-like tumbling or C buckling event, the main filament orientation

rotates continuously and as a result ∆χ = π. The scatter in the experimental data is

the result of the finite sampling rate during imaging. During U turns, the filament no

longer performs tumbles but instead remains globally aligned with the flow direction as

it undergoes its snaking motion, resulting in ∆χ < π. This explains the discontinuity in

the data of Figure 3.3(c), where C and U turns stand apart. As µ̄ increases beyond the

transition, we find that ∆χ → 0 suggesting a nearly constant mean orientation for the

folded shapes characteristic of U turns.
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3.2.4 Buckling alters tumbling frequency

During our discussion of Brownian rigid rods in the previous chapters we identified

two distinct regimes of tumbling: one which is dominated by rotational diffusion and the

other that is dictated by advection. We can employ simple calculations to obtain a scaling

relation that suggests that the tumbling frequency ν ∼ γ̇2/3 ∼ µ̄2/3. Interestingly as shown

in Figure 3.4, this scaling relation holds true even when the filament buckles into C shapes.

However one starts to see a deviation as strongly deformed hairpin shapes emerge that are

typical of U turns. In this regime the exponent tends towards 3/4 and is also confirmed

from the limited amount of simulations.
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Figure 3.4: Scaling of tumbling frequency ν non-dimensionalized by the longest relaxation
time τ as a function of the elasto-viscous number. In strong flows the scaling exponent
tends towards 3/4.

This systematic deviation towards 3/4 in strong flows is in agreement with results
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from Lang et al. [116]. This deviation was rationalized in [116] by an argument of ‘local

buckling’ at the length scales of the typical transverse fluctuations r⊥ ∼ L
√
L/`p in strong

flows which we discuss in the subsequent sections.

3.3 Morphological transitions: mechanisms

Our experiments and simulations have uncovered three dynamical regimes with in-

creasing values of µ̄, the transitions between which we now proceed to explain. A summary

of our results is provided in Figure 3.5 as a phase diagram in the (µ̄/c, `p/L) parameter

space, where the transitions are found to occur at fixed values of µ̄/c independent of `p/L.

Figure 3.5: Phase chart indicating the different dynamical regimes in the (µ̄/c, `p/L)
parameter space. The dashed black lines show the theoretical transitions from tumbling

motion to C buckling (µ̄
(1)
c /c ≈ 306.4), and from C buckling to U turns (µ̄

(2)
c /c ≈ 1700).

Full symbols: experiments; open symbols: simulations.

The first transition from tumbling motion to C buckling has received much attention

in the past, primarily in the case of non-Brownian filaments [33, 81, 117]. This limit
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is amenable to a linear stability analysis [33], which predicts a supercritical pitchfork

bifurcation whereby compressive viscous stresses exerted along the filament as it rotates

into the compressional quadrant of the flow are sufficiently strong to induce buckling.

The stability analysis is based on local slender-body theory, where the natural control

parameter arises as µ̄/c, and predicts buckling above a critical value of µ̄
(1)
c /c ≈ 306.4 [33],

in reasonable agreement with our measurements (Figure 3.5). Thermal fluctuations do

not significantly alter this threshold, but instead result in a blurred transition [2,112,122]

with an increasingly broad transitional regime where both tumbling and C buckling can be

observed for a given value of µ̄. When Brownian fluctuations are strong, i.e., for low values

of `p/L, it becomes challenging to differentiate deformations caused by viscous buckling

vs fluctuations, and thus the distinction between the two regimes becomes irrelevant.

Upon increasing µ̄/c, the second conformational transition from C shaped filaments

to elongated hairpin-like U turns undergoing snaking motions occurs. The appearance of U

turns (shown in green in Figure 3.5) occurs above a critical value µ̄
(2)
c /c that is again largely

independent of `p/L. However, the transition is not sharp, and near the critical value both

shapes can be observed simultaneously (as indicated by gray points). In fact, a single

filament in the transitional regime will typically execute both types of turns, switching

stochastically between them. This stochastic transitional regime can be characterized

more precisely by the probability of observing either shape, which we can estimate in

simulations and is shown in Figure 3.6 as a function of µ̄ for a fixed value of `p/L = 1.2.

Consistent with the phase chart in Figure 3.5 we find that the probability of U turns

continuously increases from 0 to 1 as µ̄ is varied across the transition. Similar stochastic

transitions have been reported for the onset of buckling in compressional flows [2, 112].
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Figure 3.6: Percentage of C buckling events as a function of µ̄ near the transition from
C buckling to U turns in numerical simulations. The probability was estimated over a
minimum of 10 distinct turns. The results shown are for `p/L = 1.2.

3.3.1 Origin of snaking motion: J shape

The transition towards snaking dynamics has not been characterized previously.

Our attempt at understanding its mechanism focuses on the onset of a U turn, which

always involves the formation of a J shaped configuration as visible in Figure 3.1 and also

illustrated in Figure 3.7. To elucidate the transition mechanism, we develop a theoretical

model for a J configuration, which can be viewed as a precursor to the U turn. We

discuss this model in great detail in the following section. Here we focus on the possible

mechanisms that may lead to a formation of a J shape.
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(a)
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Figure 3.7: (a) Numerical snapshots of filament shapes during the formation of a J shape
before the initiation of a U turn. (b) Typical geometric features of the J shape. During
snaking, the filament translates tangentially with an axial velocity Vsnake.

In the process of initiation two possible mechanisms may be at play. On the one

hand, it may be caused by the global buckling of the filament in the presence of highly com-

pressive viscous forces, in a manner consistent with the sequence of shapes of Figure 3.7(a).

Under sufficiently strong shear, compressive forces can induce a buckling instability on a

filament that has not yet aligned with the compressional axis and forms only a small angle

with the flow direction. Alignment of the deformed filament with the flow then results in

differential tension (compression vs tension) near its two ends, thus allowing one end to

bend while the other remains straight. A second potential mechanism proposed in [116] is

of a local buckling occurring on the typical length scale of transverse thermal fluctuations.

The scaling for Euler buckling force at the length of transverse fluctuations is given by

fB ∼ B/r2
⊥ ∼ B`p/L

3. We can obtain the characteristic viscous forces at this scale as

fv ∼ µγ̇r2
⊥ ∼ µL3γ̇/`p. Seeking a balance between these we obtain:

fB ∼ fv =⇒ µ̄ ∼
(
`p
L

)2

. (3.2)

This scaling for transition towards U turns suffices to explain the behavior of tumbling

frequency described previously. However our data, as shown in Figure 3.5 clearly indicates
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that the transition to U turns is independent of thermal fluctuations, allowing us to discard

this hypothesis. Borwnian motion are nonetheless responsible for the existence of the

transitional regime above µ̄
(2)
c /c, where they can destabilize J shapes towards C shapes

and thus prevent the occurrence of U turns. This interpretation is consistent with the

increasing extent of the transitional regime with decreasing `p/L that was further discussed

in Figure 3.6.

3.3.2 Dynamics of the J-shaped configuration

To understand the transition to U turns, we seek a simplified, non-Brownian model

of the tilted J shaped configuration as illustrated in Figure 3.7. We idealize the confor-

mation using the geometry shown in Figure 3.8.

Figure 3.8: Theoretical model of the J configuration. The bent part is approximated by
a semi-circle of radius R. There is a snaking velocity Vsnake along the contour of the shape.
The straight part of the configuration makes a tilt angle of φ with the direction of the flow.

We approximate the bent portion of the filament by a semi-circle of yet unknown

radius R and assume that the rest of the filament is straight and has a tilt angle φ with
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respect to the flow direction. We also introduce the following notations:

• T (1) ≡ velocity of the straight arm in the tangential direction t̂.

• vAO⊥ ≡ velocity of the straight arm in the normal direction n̂.

• T (θ) ≡ velocity of the semi-circle along êθ.

• vOB⊥ (θ) ≡ Velocity of the semi-circle in the êr direction.

• C(xc, yc) ≡ filament center of mass.

• (x, y) ≡ global coordinate axes centered at O.

• l ≡ length of the straight arm, also given by: l = L − πR where L is the filament

contour length.

Note that the assumption of a semi-circular shape for the bend leads to some

inconsistencies. In particular, it is not possible to satisfy the force- and moment-free

boundary conditions at point B. Adding a second straight arm emanating from B would

allow this issue to be circumvented, and the model we present here is justified in the

limit of the length of that second arm becoming zero. Additional inconsistencies also

arise at point O, where not all derivatives of the filament shape are continuous. These

assumptions are necessary to make analytical progress, and we will see a posteriori that

the model produces results that are in good agreement with experimental and simulation

data. As we discuss later, the model does also satisfy a global energy balance that serves

to make the assumptions rigorous while neglecting the boundary layers that may arise at

geometric discontinuities.

With the definitions above, the relative velocity between the fluid and the straight
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arm in the tangential and normal directions can be expressed as:

vrel‖ = T (1) + γ̇ [(l − s0) sinφ− yc] cosφ, (3.3)

vrel⊥ = vAO⊥ (s0)− γ̇ [(l − s0) sinφ− yc] sinφ. (3.4)

As there are no forces acting in the normal direction inside the straight arm, we set vrel⊥ = 0

which yields

vAO⊥ (s0) = γ̇ [(l − s0) sinφ− yc] sinφ. (3.5)

In the tangential direction, the internal tension σ(s) induces an elastic force density f(s) =

σst̂. This force density is balanced by viscous stresses using resistive force theory as

−σs = c‖vrel‖ , which can be integrated using the force-free boundary condition at point A

to yield

σ(s0) = −c‖T (1)s0 + c‖γ̇
[(
ls0 − 1

2s
2
0

)
sinφ− ycs0

]
cosφ. (3.6)

We have introduced the coefficient of resistance per unit length in the tangential direction,

which is expressed as

c‖ ≈
2πµ

log(2L/a)
, (3.7)

and we similarly define c⊥ ≈ 2c‖ as the resistance coefficient for transverse motion.

We analyze the kinematics and force balance on the semi-circular arc in a similar

fashion, and first express the relative velocities along the arc as

vrel‖ = T + vf cos(θ − φ)︸ ︷︷ ︸
vf‖

, (3.8)

vrel⊥ = vOB⊥ + vf sin(θ − φ)︸ ︷︷ ︸
vf⊥

, (3.9)

where vf = γ̇R [cosφ− cos(θ − φ)] − γ̇yc. Seeking a balance between elastic and viscous
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forces in the tangential and normal directions, we obtain:

− 1

R

dσ

dθ
= c‖v

rel
‖ , (3.10)

σ

R
+
B

R3
= c⊥v

rel
⊥ . (3.11)

The constraint of inextensibility introduces a kinematic relation between the Lagrangian

velocities in the tangential and perpendicular directions everywhere along OB, and pro-

vides the condition:

dT

dθ
+ vOB⊥ = 0. (3.12)

Eqs. (3.8)–(3.12) can be combined to yield a second-order inhomogeneous ODE for vOB⊥ (θ):

2
d2vOB⊥
dθ2

− vOB⊥ = 2
d2vf⊥
dθ2

+
d2vf‖
dθ2

. (3.13)

This ODE can be solved analytically subject to continuity of the velocity at point O and

to the tension-free boundary condition at point B:

vOB⊥ (θ) = C1 cosh(λθ) + C2 sinh(λθ) +
∑

n=1,2

[αn cos(nθ) + βn sin(nθ)], (3.14)

where λ = 1/
√

2 and

C1 =
γ̇R sin 2φ

18
, (3.15)

C2 =
B

c⊥R3 sinh(πλ)
− γ̇R

18
sin 2φ tanh

(
πλ

2

)
, (3.16)

α1 = γ̇(yc −R cosφ) sinφ, α2 = −5

9
γ̇R sin 2φ, (3.17)

β1 = −γ̇(yc −R cosφ) cosφ, β2 =
5

9
γ̇R cos 2φ. (3.18)

From vOB⊥ , the tangential velocity along the bend is easily obtained as

T = vf‖ − 2

(
dvOB⊥
dθ
− dvf⊥

dθ

)
. (3.19)
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Seeking continuity of tangential velocity and internal tension at point O, we obtain two

distinct expressions for the tangential velocity T (1) of the straight arm:

T (1) =− 2Bλ

c⊥R3 sinh(πλ)
+ γ̇yc cosφ

− 2

9
γ̇R cos 2φ+

γ̇Rλ

9
sin 2φ tanh

(
πλ

2

)
,

(3.20)

T (1) =
B

c‖R2l
− γ̇l

4
sin 2φ+ γ̇yc cosφ. (3.21)

Interestingly, (3.21) can be shown to also satisfy the torque balance on the filament.

For consistency, we require that Eqs. (3.20)–(3.21) be equal. Note, however, that

both R and φ remain unknown at this point. We therefore seek a third condition based

on dissipation arguments similar to those used to explain the tank-treading motion of

vesicles [123]. Over the course of an infinitesimal time interval δt during a U turn, a

length of δL ≡ Vsnakeδt that was initially straight becomes bent into the semi-circular

curve of radius R, where Vsnake is the snaking velocity. During that same time, the same

small amount of length becomes straight on the other side of the bend. The amount of

work required to bend the straight part can be estimated as the change in its elastic energy:

δE =
B

2

Vsnakeδt

R2
. (3.22)

This expression provides an estimate for the rate of change Ė = δE/δt of bending energy

due to the deformation of the filament at it undergoes snaking. An alternative expression

can be obtained from first principles by differentiating the bending energy as:

Ė = B

∫ L

0

rss · rtss ds. (3.23)

Applying two integrations by parts and using the fact that tension forces do not perform

any work leads to:

Ė = B

∫ L

0

rt · rssssds =

∫ L

0

rt · f eds ≡ −
∫ L

0

rt · fhds. (3.24)
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where rt is the velocity of a material point along the filament, and f e = Brssss is the

local elastic force density whose work balances that of the hydrodynamic force density

fh = −[c‖t̂t̂ + c⊥(I − t̂t̂)] · vrel. The detailed expression for the integral in Eq. (3.24)

is cumbersome and therefore omitted here. The above derivation involves integration by

parts and assumes continuity of derivatives. Equating (3.24) with δE/δt from Eq. (3.22),

and identifying the snaking velocity with the tangential velocity T (1) of the straight arm

in the J shape, we obtain the additional condition

BT (1)

2R2
= −

∫ L

0

rt · fh ds. (3.25)

The above relation is essentially an integral energy balance in the system where we have

included the dominant terms that come from the approximated J shape. In principle,

there may be other terms arising from boundary layers near the junctions of approximate

straight and semi-circular arcs which are ignored here in an asymptotic sense to facilitate

analytical progress.

It is possible to combine (3.20), (3.21) and (3.25) to form two equations for the

unknowns R and φ. These two equations are then solved numerically using a Newton-

search algorithm. The equations essentially specify two curves in the φ − R plane, and a

solution only exists when the curves intersect. For a given aspect ratio of the filament, we

find that there exists a critical value of µ̄ below which the curves do not intersect. This

suggests that below this value J-shapes can no longer form and therefore U turns cannot

occur. The theoretically calculated value of µ̄
(2)
c /c ≈ 1700 is plotted as a dashed line on

Figure 3.5 and indeed provides a very good estimate for the onset of U turns.

3.3.3 Dynamics of U -turns

We further characterize the dynamics during U turns, for which our theoretical

model also provides predictions. The filament orientation at the onset of a turn is plotted
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Figure 3.9: (a) Dependence on µ̄ of the tilt angle φ formed by J shapes with respect to the
flow direction in experiments, simulations and in our theoretical model. (b) Fraction δs/L of
the filament length that is bent during a U turn (see Appendix A for detailed definition of
δs). (c) Snaking velocity Vsnake rescaled with γ̇Rth and plotted against µ̄ from experiments,
simulations and theory; here, Rth is the theoretically predicted fold radius. (d) A perfect
collapse of snaking velocity from the theoretical model.

in Figure 3.9(a), showing the tilt angle φ formed by the straight arm of the J shape with

respect to the flow direction as a function of µ̄. Our theoretical model for dynamics of the

J shape also provides the value of φ, in excellent agreement with experiments. In both

cases, the tilt angle decreases with increasing flow strength due to increased alignment by

the flow. For very long filaments (limit of large µ̄), accurate measurements of the tilt angle
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become challenging due to shape fluctuations, hence the increased scatter in the data.

After a J shape is initiated, the curvature of the folded region remains nearly constant in

time as suggested by the plateau in the bending energy (Figure 3.3(c)). This provides a

strong basis for approximating the bent part of the filament as a semi-circle of radius R

in our model. The theoretical prediction Rth and measurements of the radius on J shapes

from experiments and simulations agree quite well in Figure 3.9(b) (see Appendix A for

details). The radius of the bend is seen to decrease with µ̄, as compressive viscous stresses

in strong flows allow increasingly tighter folding of the filament.

The rotation of the end-to-end vector during the U turn results primarily from tank-

treading of the filament along its arclength, unlike the global rotation that dominates the

tumbling and C buckling regimes. While the snaking velocity is not constant during a

turn, its average value can be quantitatively measured through the time derivative of the

end-to-end distance, yielding the approximation Vsnake ≈ L̇ee/2. The relevant dynamic

length and time scales during this snaking motion are the radius of curvature R of the

bent segment and shear rate γ̇. This is supported by our theory, where rescaling Vsnake by

γ̇Rth collapses the predicted velocities over a range of filament lengths as shown in Figure

Figure 3.9(d). The same rescaling applied to the experimental and numerical data and

using the theoretical radius Rth also provides a good collapse in Figure 3.9(c).

Harasim et al. [30] previously proposed a simplified theory of the U turn, which

shares similarities with ours but assumes that the filament is aligned with the flow direction

and neglects elastic stresses inside the fold. Their predictions are in partial agreement with

our results in the limit of very long filaments and strong shear. However their theory is

unable to predict and explain the transition from buckling to U turns.
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3.4 Rheology of dilute suspension

So far our discussions of filament morphology has outlined how competition between

elastic and viscous forces can lead to Euler-buckling instabilities that make way to deformed

filament configurations. While the transitions were found to be fairly independent of the

Brownian motion of the filaments, fluctuations however introduce shape perturbations and

can smooth out sharp bifurcations [112]. The natural question that follows from studies

on morphologies is that does microscopic dynamics alter macroscopic properties of such

suspensions? We know from our introductory discussion on rheology that it is indeed the

deformation, rotation and dissipation induced by the micro-structure of a suspension that

leads to bulk rheological properties. The majority of previous research has focused on

fully flexible polymers, which are characterized, both in solution and in the melt, by a

self-similar fractal structure from the scale of a monomer up to the coil size [95]. This

peculiar property allows for the development of elegant and simple scaling arguments for

the dynamic properties of polymer solutions. Another limit that has received significant

attention is the rheological properties of bead-rod chains that model inextensible but

flexible polymers [124–126]. In the past decades, several studies have focused on the

conformational and rheological properties of single semiflexible polymers under flow using

theory [127], simulations [25] and experiments [26, 107]. However λ-DNA which has been

the model polymer for most of these studies have L � `p and its dynamics is distinctly

different from actin filaments that are of interest in the present study. Only recently

there have been experiments [128] and mesoscopic simulations [129] of semi-dilute polymer

suspensions with L ∼ `p that exhibit shear thinning and positive normal stress difference.

On the other hand there has also been a few studies on the rheological properties of

semi-dilute non-Brownian suspensions [130, 131] that are important for various industrial

processes [118]. Becker and Shelley [33] first mapped these macroscopic behaviors to buck-
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ling instabilities of non-Brownian filaments that were further explored through detailed

nonlinear simulations [81]. A natural extension of the present study is to understand the

role of thermal fluctuations and buckling in dilute suspension of actin filaments. This is

distinctly different from studies in semi-dilute suspension since we can relate each compo-

nent of microscopic deformations to macroscopic stress and single out the role of elasticity

and shape fluctuations. In an attempt to understand the role of flow induced deforma-

tions we start by a brief review of classical rheology of rigid rods [5, 6, 132] that serves as

the reference for our problem. We then discuss methods of computing ensemble averaged

stress, a few open questions related to non-Brownian fibers, and finally discuss new results

of rheology for dilute suspensions.

3.4.1 Rheology of rigid rod suspension

This problem has received a considerable amount of interest starting from the pio-

neering work by Leal and Hinch [5, 132], Stewart and Sorensen [133] and Brenner [6] who

investigated the role of Brownian fluctuations in orientational distribution of rigid rods in

shear flow and the subsequent effect in rheology. Our aim is to summarize the key results

and outline the methodology for some of the calculations without going into much of the

technical details.

We consider a Brownian rigid rod with aspect ratio ε = a/L � 1 where a is the

characteristic diameter and L is the length of the object placed in a simple shear flow

with u∞ = (γ̇y, 0, 0). We also define r = 1/ε the inverse of the aspect ratio for the sake of

notational convenience. We restrict ourselves to the dilute regime with nL3 � 1 where n is

the mean particle density in the suspension, and thus neglect inter-particle hydrodynamic

interactions. As discussed in Chapter 2 the rods are characterized by an orientation vector

p that rotates in presence of an externally imposed shear flow and is acted on by Brownian
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torques that causes it to diffuse. The dimensionless number that governs the dynamics

of these rods is the rotary Péclet number Per = γ̇/dr number where dr is the rotational

diffusivity of the rod. The Péclet number and the elasto-viscous number employed in our

simulations of semi-flexible polymers are related as follows:

Per =
µ̄

24 ln(2r)

`p
L
. (3.26)

In the limit of `p/L → ∞ the flexible polymers behave like Brownian rigid rods. The

orientational dynamics of the Brownian rod is governed by (2.57). We can find the Fokker-

Planck description for the probability distribution of orientation ψ(p, t) associated with

the Langevin dynamics. It is given by:

∂ψ

∂t
+∇p · (ṗψ) = dr∇2

pψ, (3.27)

where ∇p is the gradient operator on the unit sphere of orientations and is defined as:

∇p = (δij − pipj)∂/∂pj.

The extra stress due to the slender particles can be obtained by computing the

stresslet or the moment of force exerted by the particles on the fluid as outlined in [134,

135]. The net extra-stress that we denote by Σ will have two contributions: one from

orientational dynamics of the particles in presence of flow and one from the Brownian

stress. They are given by [136–139]:

Σf
ij =

πµnL3

6 ln(2r)

[
〈pipjpkpl〉 −

1

3
δij〈pkpl〉

]
E∞kl , (3.28)

ΣB
ij = 3nkT

[
〈pipj〉 −

1

3
δij

]
. (3.29)

The superscript f and B denote contributions from flow and Brownian fluctuations. E∞

denotes the rate of strain tensor of the problem and 〈(.)〉 denotes orientational average

and is defined as:

〈(.)〉 =

∫

Ωp

(.)ψ∞(p) dp, (3.30)
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where ψ∞(p) is the steady state orientational distribution obtained by a balance of advec-

tive and diffusive flux in (3.27). This reduces the problem of rheology to simply finding

orientational moments of the unit vector p. We can now define the shear-viscosity and

normal stress coefficients in terms of the orientational moments for a simple shear flow.

We have

η =
Σxy

µγ̇L3
=⇒ ln(2r)η = π

[
1

6
〈p2
xp

2
y〉+

1

Per
〈pxpy〉

]
, (3.31)

Ψ1 =
N1 ≡ Σxx − Σyy

µγ̇2L3
=⇒ ln(2r)drΨ1 =

π

Per

[
〈p3
xpy〉 − 〈pxp3

y〉+
1

Per

(
〈p2
x〉 − 〈p2

y〉
)]
,

(3.32)

Ψ2 =
N2 ≡ Σyy − Σzz

µγ̇2L3
=⇒ ln(2r)drΨ2 =

π

Per

[
〈pxp3

y〉 − 〈pxpyp2
z〉+

1

Per

(
〈p2
y〉 − 〈p2

z〉
)]
.

(3.33)

In most of the cases one need to compute ψ∞(p) numerically to obtain the orientational

moments. However for certain regimes it is possible to compute the asymptotic form of the

probability distribution function that allows us to understand the rheology. We discuss

the main asymptotic results in the next section.

3.4.2 Summary of asymptotic results

In absence of flow the distribution of particles are isotropic due to Brownian motion.

In very weak flow, Per � 1 it is possible to use a regular perturbation expansion of

the distribution function in Per to obtain its asymptotic form. In three dimensions this

asymptotic expansion takes the following form:

ψ(p) =
1

4π
+

Per
8π

[pxpy] +
Pe2

r

96π
[p2
x + 3p2

xp
2
y − p2

y]. (3.34)

In the limit of strong flows characterized by Per � r3 + r−3 the probability distribution

function is peaked at the zero-shear plane as the rods spend most of their time remaining
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aligned with the flow. Using boundary layer analysis, it is possible to determine the

asymptotic form of the distribution function that allows us to compute the rheological

properties [132]. Finally there emerges an intermediate asymptotic regime with r3 +r−3 �

Per � 1, where it is possible to obtain the scaling for shear viscosity and normal stress

coefficients [5]. We summarize these results in the table below

Table 3.1: Asymptotic forms of relevant rheological measures [5, 6].

Regimes Scalings

Per � 1 ηp, drΨ1, drΨ2 ∼ constant

r3 + r−3 � Per � 1 ηp ∼ Pe−1/3
r , drΨ1, drψ2 ∼ Pe−4/3

r

Per � r3 + r−3 ηp, drΨ1, drΨ2 ∼ constant

3.4.3 Computing stress for Brownian suspensions

Stresslet: Kramers-Kirkwood expression

The simplest way to compute the stress in a suspension is to use the expression

of a stresslet that generalizes the Kirkwood formula [140] commonly used for molecular

systems. We start by recalling the force balance for individual filaments. We have:

f v + f e + fBr = 0, (3.35)

where f v is the viscous force, f e is the elastic force and fBr are the Brownian force. The

stresslet or the Kramer-Kirkwood expression for particle stress is defined as

Σ =

〈∫ L

0

(x− xc)f vds
〉

= −
〈∫ L

0

(x− xc)(f e + fBr)ds

〉
, (3.36)

82



where the center of mass xc has been subtracted from the position. Now note that the

Brownian fluctuations have contributions of order (∆t)−1/2 in the above expression. This

results in poor convergence of the stress if the above expression is used. One way to avoid

this is to use noise filtering that filters out these correlations [126].

Giesekus stress in steady flow

Starting from the definition of the stresslet it is possible to derive an alternative

form of the stress tensor that depends only on the conformation of the polymer. Simply

re-arranging the expression of stresslet we find

Σ =

〈∫ L

0

(x− xc)f v ds

〉
=

〈∫ L

0

(x− xc) (R · (ẋ− u∞)) ds

〉
. (3.37)

In the above expression R ≡ M−1 is the resistance tensor and u∞ is the background

velocity field. At steady state, the ensemble-averaged correlation between x and ẋ is

identically zero [126,141] and we are left with:

Σ = −
〈∫ L

0

(x− xc) (R · u∞) ds

〉
. (3.38)

The above expression known as the Giesekus stress is strictly valid in the steady state and

cannot be applied for unsteady flows [126]. However in the steady state the Giesekus ex-

pression is identical to the Kramer-Kirkwood stress. The advantage of using this expression

is that one do not need to worry about O(∆t−1/2) correlations of Brownian fluctuations

and the convergence is much faster [69]. The Giesekus expression also directly relates the

macroscopic stress to the conformation of the micro-structure. In order to see this, con-

sider a case where the background velocity field is linear and we have u∞ = κ ·x, where κ

is the velocity gradient tensor. For further simplification if we assume a constant friction

coefficient ζ then we have:

Σ = −κζ ·
〈∫ L

0

(x− xc)x ds

〉
. (3.39)
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The above expression contains the ensemble average of the gyration tensor and thus de-

pends purely on the confromation of the filament.

3.4.4 2D non-Brownian simulations

We first consider the case of planar non-Brownian filaments that has previously

been well studied [33,81]. The non-Brownian simulations help us appreciate how buckling

instabilities have the potential to alter rheology of suspensions. In order to highlight the

role of deformation we performed two sets of simulations. The first one involves studying

the dynamics of a rigid rod that simply rotates and aligns itself with the zero-shear plane.

The second one is with a flexible fiber for which we introduce small numerical perturbations

in the initial confirmations to observe buckling. This results in S shaped buckling for the

results reported here.

50403020100

-100

0

100

50403020100

100

50

0

Figure 3.10: Signature of buckling in shear stress and the normal stress difference. We
observe shear-thinning and positive normal stress. Parameter values: µ̄/c = 1× 104.

The above figure shows the shear stress and the first normal-stress difference for

rigid rod in gray. We notice that the period-averaged shear stress is positive, but the first

normal stress vanishes due to symmetry. In color we show the same when the filament

buckles. While the exact nature of the evolution of stress depends on the initial perturba-

tion and the geometry of buckling, we clearly see the symmetry in normal stress is broken.

It is also evident that the integrated shear stress will be smaller compared to the rigid rod
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which points to shear thinning. Interestingly due to the asymmetry of N1 the integrted

normal stress is positive.

3.4.5 A fictitious stress: role of fluctuations

Our non-Brownian simulations suggest that buckling leads to shear thinning and

positive normal stress differences. These observations are in agreement with previous theo-

retical results [33,81]. However in [33] it was suggested that beyond a critical µ̄ the normal

stress difference becomes negative. This is in disagreement with experiments with flexible

fibers where the normal stress typically grows linearly with the shear rate. This discrep-

ancy was attributed to long-range hydrodynamic interactions present in experiments with

semi-dilute suspensions.

In the reported regime of negative normal stress the filaments typically exhibit

snaking motions or S shaped buckling. We believe that one possible source of error in [33]

can be the method of introducing numerical perturbations that are required to initiate

buckling in non-Brownian filaments. The aim of this section is to probe into this effect and

investigate normal stress-differences for hairpin shaped conformations due to deformations.

To this end we compute a fictitious stress from a numerical thought experiment. The steps

of the numerical experiment are as follows:

• Start a Brownian simulation with the filament aligned with the zero shear flow plane.

• Whenever the filament starts deforming switch off Brownian fluctuations artificially

and allow the filament to deform purely in presence of flow. The criterion to de-

termine onset of deformation was set to: Lee ≤ 0.98L, where Lee is the end-to-end

distance.

• Compute the stresslet during the period of deformation.
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Figure 3.11: Positive normal stress difference that scales linearly with flow-strength. On
top we show how the fictitious stress is computed and the time evolution of both the end-
to-end distance and N1. Below we show the period averaged normal stress difference that
increases linearly with shear rate. Parameter: µ̄/c = 4× 104 and `p/L = 5.

This method of computing a fictitious stress has certain advantages. First, it decouples

the Brownian stress present even when the filament is aligned and the stress due to purely

elastic instabilities. The second advantage is that instead of artificial numerical pertur-

bations, the typical transverse fluctuations r⊥ that induces buckling come from physical

Brownian motion with r⊥ ∼
√
L3/`p. This is a reliable way to observe changes in normal

stress difference or the shear stress due to buckling. In order to facilitate comparison

with [33] we performed the simulations in 2D. Figure 3.11 illustrates the key features of

the method of calculating this artificial stress. When the filament is aligned with the flow,

Brownian fluctuations are present. The stresslet then results in a noisy signal as observed
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above. On the other hand, for a non-Brownian filament a perfect alignment will lead to

zero N1. As the filament starts deforming, the fluctuations are switched off and we ob-

serve a smooth signal as expected that has striking similarities with the signatures in 2D

for non-Brownian filaments as shown in Figure 3.10. We notice that while N1(t) can be

negative, the time-averaged stress over one period of deformation is always positive. This

averaged stress over a period of tumbling is plotted at the bottom of Figure 3.11 and is

seen to increases monotonically with shear rate.

This now highlights the key difference from the simulations in [33]. The normal

stress remains positive in strong flows, even in the absence of long range hydrodynamic

interactions.

3.4.6 Rheology of weakly deformable Brownian filaments

Three-dimensional rheology

We now move on to discuss rheology of dilute suspension of Brownian filaments.

We are particularly interested in the weakly deformable limit where `p/L � 1. This

limit allows us to map our results to rigid rod rheology in weak flow and appreciate the

differences once we enter the buckling regime. Before discussing rheology let us recall that

the onset of Euler-buckling instability is µ̄(1)/c ∼ 300 and the onset of snaking motion is

around µ̄(2)/c ∼ 2 × 103. It is important to highlight that these results were obtained in

2D simulations and was confirmed by planar linear stability analysis [33].
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Figure 3.12: Shear thinning of a weakly deformable polymer in three dimensionss with
`p/L = 1000. The limits of rigid rods and asymptotics are highlighted along with the onset
of buckling instabilities.

We discuss the rheology of filaments with `p/L = 1000. In this almost rigid limit

we first recover the asymptotic results in weak flow that are dominated by Brownian

motion [5, 139]. Both the shear viscosity and the first normal stress coefficient remain

constant as seen in Figure 3.12 and 3.13. As the strength of the flow increases we start

observing shear thinning along with monotonic increase of the first normal stress N1. In

the intermediate asymptotic regime defined by r3 + r−3 � Per � 1, we indeed recover

the scaling law as suggested in [5]. Quite surprisingly, what stands out is that this scaling

law holds true even after initiation of buckling instability as seen in Figure 3.12. This is

in sharp contrast with the 2D non-Brownian results that suggest rheology is significantly

altered due to buckling. This apparently puzzling result can be understood from the fact

that a C shaped buckling as observed at the onset requires rotation of the fiber in the plane

of shear which subsequently leads to strong compressive forces and eventually buckling.

In 3D, the filament has the freedom to rotate out of the plane. As a result the effective
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µ̄ responsible for inducing buckling is much smaller compared to the actual flow strength.

This delays the onset of buckling and removes its signature from the stress by averaging.

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Positive normal stress difference and viscosity coefficient in three dimension
with `p/L = 1000. The limits of rigid rods and asymptotics are highlighted along with the
onset of buckling instabilities. When the flow is sufficiently strong we find 〈N1〉 ∼ γ̇.

On the other hand, if the filament was more flexible with `p/L ∼ O(10), the sig-

nature would have been smeared out by strong fluctuations along with the effects of non-

planarity. However one finds a signature of buckling in both shear viscosity and normal
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stress once the filament transitions to snaking motion or U turns. For the initiation of a

hairpin shape the filament buckles remaining almost aligned with the plane of shear. This

can happen in strong flows whenever the filament is aligned in the zero-shear plane.

It is interesting to note that the normal stress difference N1 is proportional to

the shear rate in the strongly deformed regime of snaking motions, in agreement with

experiments [130,131].

Two dimensional rheology
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Figure 3.14: Components of stress tensor and the normal stress difference as a function of
the elasto-viscous number. The data shows change of scaling law at the onset of buckling.
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Our previous discussions on rheology in three dimensions have highlighted why it is

difficult to observe signatures at the onset of buckling in 3D. Thus it is interesting to probe

the problem in 2D. Here we perform simulations with `p/L = 50 and look for signatures

of buckling in the stress.

In the above figure we have illustrated the scaling law for the components of the

stress tensor as a function of µ̄/c. Unlike the case for 3D we observe that the stress shows

different scaling laws once we transition from tumbling to buckling regime. This behavior

is in contrast to 3D where changes in scaling law were only observed post initiation of

snaking. As expected the signatures in stress is reflected in shear viscosity and normal

stress coefficients shown in Figure 3.15.
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Figure 3.15: η and Ψ1 as a function of µ̄/c. Pre-buckling we have, η ∼ µ̄−1/3 and Ψ1 ∼
µ̄−4/3. Post-buckling we have η ∼ µ̄−1/2 and Ψ1 ∼ µ̄−1.
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3.5 Conclusion

In this chapter, using stabilized actin filaments as a model polymer, we have system-

atically studied and analyzed the conformational transitions of elastic Brownian filaments

in simple shear flow as the elasto-viscous number is increased. Our experimental measure-

ments were shown to be in excellent agreement with a computational model describing

the filaments as fluctuating elastic rods with slender-body hydrodynamics. By varying

filament contour length and applied shear rate, we performed a broad exploration of the

parameter space and confirmed the existence of a sequence of transitions, from rod-like

tumbling to elastic buckling to snaking motions. While snaking motions had been previ-

ously observed in a number of experimental configurations, the existence of a C buckling

regime had not been confirmed clearly. This is due to the fact that C buckling is only

visible over a limited range of elasto-viscous numbers and occurs only in simple shear flow,

challenging to realize experimentally. We showed that both transitions are primarily gov-

erned by µ̄/c. Brownian fluctuations do not modify the thresholds but tend to blur the

transitions by allowing distinct dynamics to coexist over certain ranges of µ̄.

While the first transition from tumbling to buckling had been previously described

as a supercritical linear buckling instability [33], the transition from buckling to snaking

was heretofore unexplained. Using a simple analytical model for the dynamics of the J

shape that is the precursor to snaking turns, we were able to obtain a theoretical prediction

for the threshold elasto-viscous number above which snake turns become possible. The

model did not take thermal noise into account, but highlighted the subtle role played by

tension and compression during the onset of the turn.

Our analysis lays the foundations to study rheology of dilute suspensions. Initial

results on non-Brownian filaments suggest that buckling instability results in shear thin-

ning, consistent with previous observations [33,81]. However as opposed to [33] the normal
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stress remained positive and increased monotonically with shear rate. Preliminary studies

for Brownian filaments point to subtle differences in 3D and 2D rheological behaviors. We

find that unlike non-Brownian filaments the signature of buckling on stress is weak. In 3D

the effect is smeared out due to out-of-plane rotation of the filament and the behavior is

prominent only after emergence of hairpin conformations.

Part of this Chapter was published in Proceedings of the National Academy of Sci-

ences (2018), authored by Yanan Liu, Brato Chakrabarti, David Saintillan, Anke Lindner

and Olivia du Roure [7]. The dissertation author performed numerical simulations and

worked on theoretical modeling for this paper.
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Chapter 4

Helical buckling of filaments in

compressional flow

4.1 Introduction

In the previous chapter we have discussed morphologies of actin filaments in sim-

ple shear. We have outlined how competition between viscous loading and elasticity can

lead to the formation of buckled conformation and how such instabilities have the poten-

tial to alter rheological properties of suspensions. Such buckling instabilities have also

been predicted in stagnation point flows [2, 111, 112, 142–144] and result in characteristic

two-dimensional buckling modes. Flexible filaments can also be compressed into more

compact, three-dimensional conformations under stronger forcing, which is going to be the

main focus of this chapter. Here we will discuss a rather surprising finding that a freely

suspended straight flexible filament can buckle into a helical shape in a purely compres-

sional flow. The first such instance can perhaps be traced back to hand-drawn sketches

of the coiling of elastic wood pulp fibers in strong shear flow [118], which was later also

observed with actin filaments [30] and in simulations of diatom chains [117,145]. Helically
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coiled structures have also been observed during the manufacturing of synthetic wet-spun

fibers for cosmetics, where long fibers undergo buckling in a compressional flow [146]. In

biology, the sessile protozoan Vorticella is known to propel itself by exploiting the sudden

calcium-powered contraction of its slender stalk, which has been shown to form coiled

structures [147]. Helical shapes of elastic fibers transported in turbulent flows have also

recently been reported [148]. For specific initial conditions one can also observe formation

of knots [149].

These helicoidal structures are reminiscent of the classical ‘helical buckling’ problem

of solid mechanics that has received wide attention [64,150,151] and was discussed briefly in

Chapter 2. In the classical version of the problem, a straight elastic rod subjected to tension

and end moments buckles into helical shapes that are relevant in a variety of situations

such as the morphology of plant roots [62], the jamming of nanorods [152], the packing of

DNA inside viral capsids [153], and oil-drilling processes [66]. The phenomenon discussed

here thus stands out from classical helical buckling in that the filament spontaneously

adopts a chiral helicoidal morphology in the absence of any intrinsic twist or external

moments.

4.2 Problem setup

We elucidate this generic morphological transition through a combination of exper-

iments, simulations and theoretical modeling. For the experiments performed at ESPCI

France, we used our model semiflexible actin filaments with `p = 17±1µm. To induce and

visualize buckling, we flowed fluorescently labeled filaments through a convergent-divergent

hyperbolic microfluidic channel (shown in Figure 4.1(a)) specially designed and optimized

to provide uniform extension and compression rates over large distances while ensuring a

long residence time for the filaments [154, 155]. These experiments are complemented by
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two sets of very different simulations. The first model closely mimics the experimental con-

ditions where we have performed Langevin simulations of inextensible Euler elastica with

the local slender body theory as outlined in previous chapters. In the second model, we

simulated non-Brownian elastic fibers composed of surface nodes connected by a network

of springs providing structural rigidity and bending resistance [117,156] in an axisymmet-

ric channel [145] with the method of regularized Stokeslets. These filaments are finitely

extensible and point to the robustness of the observed phenomenon. We provide the details

of this simulation in Appendix B.
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Figure 4.1: (a) Geometry of the optimized hyperbolic microfluidic channel used in experi-
ments, with markers indicating the positions where snapshots of filament conformation will
be taken. (b)-(c) Axial velocity u and strain rate ε̇ as functions of streamwise position x
along the channel centerline where filaments are transported. A constant strain rate ε̇ occurs
over a given distance, and measurements are made in the compressional region highlighted
in red.

As discussed in the following section, both types of simulations, as well as seminal

simulations by Chelakkot et al. [157], recapitulate the helix formation seen in experiments,

pointing to a very generic transition that only requires a strong compressional flow as we

rationalize below using a nonlinear stability analysis. Our findings highlight a new mech-

anism by which a one-dimensional object can buckle into a chiral helicoidal shape under

viscous loading. This mechanism remained undiscovered until now as typical experimental
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setups in stagnation point flows do not allow for sufficiently strong compression rates or

long residence times, and as past theoretical analyses have been limited to two dimensions.

Our results also underscore the robustness of this phenomenon, which occurs independent

of the presence of thermal fluctuations and across very different flow environments.

4.3 Helical buckling: morphologies

4.3.1 Evolution of conformations

Typical buckling events in experiments and Brownian simulations are shown in

Figure 4.2 for increasing values of the elastoviscous number µ̄ [144], a dimensionless mea-

sure of compression rate which serves as the primary control parameter of the problem.

We focus here on the dynamics in the divergent part of a microfluidic hyperbolic chan-

nel (see Figure 4.1(a-c)) where compression at constant strain rate ε̇ occurs, with the

convergent part mainly serving to align and pre-stretch the filaments before measure-

ments begin. As the filaments enter the compressional region (column (i)), they are indeed

mostly straight since thermal shape fluctuations have been largely suppressed as discussed

in Chapter 2.6 and in [2]. Snapshots at increasing values of the dimensionless time ε̇t in

panels (ii) to (v) show the growth of deformations with distinct emergent morphologies

for increasing elastoviscous numbers (top to bottom). In relatively weak flows (first row),

deformations are mostly planar and resemble those seen in past studies in stagnation point

flows [2,112,113]. As µ̄ is increased in subsequent rows, more complex shapes emerge that

are fully three-dimensional, as evidenced by the blurriness of some parts of the filaments in

the experimental images due to deformations out of the focal plane. Another indicator of

three-dimensionality is the presence of apparent kinks (orange arrows) in the 2D images,

which must result from the projection of 3D shapes. In some cases, actual loops (purple
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arrows) can be observed and strongly hint at helicoidal shapes.

(ii) (iii) (iv) (v)(i)

µ̄
<latexit sha1_base64="MUezClFf6RdRwy9swCN9ovdWymM="></latexit>

✏̇t
<latexit sha1_base64="EQalr+6BQWgV9MrRGqD1g46SdlY=">AAADs3icbZJLb9NAEMe3MY8SXikcuayIkDhEkc1DcOBQCQ49VaUiaaXYinbX62bVfbjesdvI2k/AV+AK34lvwzqxCLUZyfZofjPW/z8amkthIQx/7w2CO3fv3d9/MHz46PGTp6ODZ3NryoLxGTPSFOeUWC6F5jMQIPl5XnCiqORn9PJzw88qXlhh9DdY5zxR5EKLTDACvrQcjeLUQB3z3ApptMOwHI3DabgJ3E+iNhmjNk6WB4Pv/h+sVFwDk8TaRRTmkNSkAMEkd8O4tDwn7JJc8IVPNVHcJvVGusOvfCXFmSn8owFvqv9O1ERZu1bUdyoCK9tlTXFC1X9xUwFjpO1ogOxjUgudl8A120rISonB4GZDOBUFZyDXPiGsEN4FZitSEAZ+j8NY82tmlCI6rWOaZa5uPjhzroPKlpQ9UrWk6pF5S+Zdoo6df3k/jMj6uEvLirlFlNTbFprV8YoAHkfONe60gMobMsUEUyNTfC1ghX3DBGsD2EqigacdIVetkKuexJuW3HQJd7szuk1SLv1U/IVLIH6uB9d/4boD2WpnGx91d3LqIVW7vZx6v/58o+6x9pP5m2n0dhp9fTc+/NQe8j56gV6i1yhCH9AhOkInaIYYqtAP9BP9Ct4Hi4AG6bZ1sNfOPEe3IlB/AD0SQB0=</latexit>

20 µm
<latexit sha1_base64="raIDtfLnP+BAy69n3K0Dr2pNCRA="></latexit>

Kinks Loops

1
<latexit sha1_base64="rvjGKQqZTSooomBRxr4LJTMEg88="></latexit>

2
<latexit sha1_base64="1b/OSXqepFkb17p4qAS227kGZoU="></latexit>

3
<latexit sha1_base64="c7Rm9k7Z/U8u9H9rSyJDUMbKy18="></latexit>

4
<latexit sha1_base64="twsIl0rlxTA7LqRMu+Q5iS8JB0g="></latexit>

x
<latexit sha1_base64="me3ZyEv5BB6jnfyWMdbQzj3YPtQ="></latexit>

y
<latexit sha1_base64="3oqXkAdlnyk69V6qO+1Ep1ZSxmc="></latexit>

Figure 4.2: Snapshots of evolving filament morphologies from experiments and Brownian
simulations compared at the same dimensionless time ε̇t, measured from the instant the
filament enters the compressional region. Vertical panels correspond to increasing values
of the elastoviscous number in the range µ̄ ∼ 2 × 103 − 106. For sufficiently large µ̄, 3D
shapes emerge, as evidenced by kinks (orange arrows) and loops (purple arrows) in the 2D
projections

The three dimensionality of the conformations is further confirmed in Figure 4.3(a),

showing simulated Brownian filament projections in the cross-sectional plane correspond-

ing to panel (v) of Figure 4.2, where these loops are now clearly visible. A few confor-

mations re-oriented due to fluctuations in the focal plane of the experiment making it

possible to image the projections. This is shown in Figure 4.3(b) and further reveals the

helical structure. The number of loops along the filament increases with µ̄ as higher un-

stable buckling modes become excited. The emerging coiled structures have no preferred

chirality as expected from symmetry, and in some cases reversals in the handedness occur

at topological perversions along the contour length. As the filament is transported down-

stream, the helix is further compressed by the flow until it exits the compressional region

and is finally allowed to relax.
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Figure 4.3: (a) Projections of simulated filament conformations corresponding to (v) in
the cross-sectional plane of the channel, highlighting the 3D helicoidal nature of the mor-
phologies at large µ̄. (b) Projections of some conformations from experiments that randomly
rotate in the focal plane.

Figure 4.4: Typical buckling sequence in a simulation of a non-Brownian filament with
µ̄ = 6.5×104. In the simulation shown, deformations first occur in a 2D plane before the 3D
helical shape develops. Deformations also tend to be largest near the center of the filament.

Simulations of a non-Brownian fiber in Figure 4.4 are consistent with these ob-

servations and provide a cleaner picture of the buckling process. In absence of thermal

fluctuations, deformations are typically concentrated near the center of the filament, with

the filament ends remaining mostly straight and aligned with the flow axis. In simulations

at moderate flow strengths, we find that deformations first occur in a two-dimensional
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plane before three-dimensional effects kick in and lead to helix formation. This curious

sequence of events, which we elucidate below, disappears in very strong flows where three-

dimensional shapes emerge almost instantly. As in the Brownian case, shape perversions

occasionally arise along the filament and cause handedness reversals [150,158].

4.3.2 Quantitative characterization

The evolution of the shape during a buckling event is quantified in Figure. 4.6(a-

b), where we plot the helix length and radius as functions of time from experiments and

Brownian simulations. The length is simply estimated by the end-to-end-distance Lee(t) =

‖x(L, t) − x(0, t)‖ in the plane of motion, where x(s, t) is a Lagrangian parameterization

of the filament centerline with arc-length s ∈ [0, L]. 1.00.80.60.40.20
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Figure 4.5: A representative helical coiled conformation of the filament from experiments
and simulations illustrating the end-to-end distance and two complementary ways of es-
timating coiling radius. In experiments: R⊥(t) = (ymax(t)− ymin(t)) /2; in simulations:
R2

eff(t) = 〈y(s, t)2 + z(s, t)2〉s. Only the central part of the filament (in purple) is considered
when estimating R.

Estimating the coil radius is more challenging and is done using two complementary

approaches illustrated in Fig. 4.5. As experiments only provide shape projections in the

(x, y) plane, we estimate the radius in terms of the lateral extent of the filament as R⊥(t) =

(ymax(t)− ymin(t)) /2. In simulations, the full filament shape is available and we define an
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effective radius by fitting the cross-sectional projection in the (y, z) plane with a circle:

R2
eff(t) = 〈y(s, t)2 + z(s, t)2〉s. In both cases, we only consider the central part of the

filament where the conformation is mostly helical and omit filament ends.
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Figure 4.6: (a-b) Evolution of the end-to-end distance Lee and the coiling radius R as
functions of Hencky strain ε̇t in experiments (a) and Brownian (b) simulations. The range
used to estimate the final coil radius in each case is shown in black. In (b) the vertical
dashed line shows the onset of buckling. (c) The compression speed of the helix, estimated
as the rate of change of the end-to-end distance, depends linearly on ε̇L with a slope of
∼ 0.7.

The time evolution of the length and radius is similar in experiments and both

types of simulations: in all cases, Lee decreases and R increases while the helix forms and

gets compressed by the flow. The decrease in Lee is found to be nearly linear with time.
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This allows us to extract a characteristic speed |L̇ee| for compression of the helix, which

we plot as a function ε̇L in Figure 4.6(c). A linear relationship |L̇ee| ∼ 0.7ε̇L is found in

both experiments and simulations, with a slope of less than unity that we attribute to the

finite elastic resistance of the buckled helical shapes.

4.3.3 Coiling radius and scaling laws

In the final stage of compression, the growth of the helix radius slows down as seen

in Figure. 4.6(a-b), and a nearly steady shape is reached with a roughly constant radius.

In experiments and Brownian simulations, this occurs near a Hencky strain of unity, and

we estimate the final radius by averaging either R⊥(t) or Reff(t) over ε̇t ∼ 0.8− 1. In non-

Brownian simulations, filaments typically experience larger Hencky strains, though the

key features of the dynamics remain unaltered; in this case, we estimate the final radius

by performing the average over ε̇t ∼ 1.6 − 2. By this procedure, we measured the final

coiling radius of the filaments over three decades of the elastoviscous number µ̄, where

µ̄ was varied by changing the contour length L. The results, displayed in Figure. 4.7(a),

are quite stunning and show a nearly constant dimensional radius over a large range

of µ̄, indicating that the final helix radius is largely independent of contour length. The

agreement between experiments and simulations is again very good, with a weak systematic

deviation attributed to the different ways of estimating R and to the weak extensibility of

the filaments in the non-Brownian model. We rationalize this peculiar result by developing

a scaling theory for the radius of an inextensible helix undergoing compression in flow.

102



0.070.060.040.03

0.01

0.02

0.03
 
 
 

 

10
4

10
5

10
6

10
7

0.02

0.04

0.06

0.08
0.1

80604020

6

4

2

0

 
 
 

 

6040200

45

30

15

0

 
 
 

1.00.80.60.40.20.0

3

2

1

0

40

30

20

10

L
e
e

(µ
m

)
<latexit sha1_base64="SbTSXzT43zDZqUWAr7FAlGV1eLw="></latexit>

R
(µ

m
)

<latexit sha1_base64="Pliaa8kAZIvHlbxOLzhjb2TAzdA=">AAADtXicdZLbbtNAEIa3MYcSTmm55GZFhFSkKLKbkHBZARe9qkpE0kqxFa3X63rVPbjecZrI8hPwDtzCK/E2rBNDwYGR7B3NNyP9/2jCVHADrvtjr+Xcu//g4f6j9uMnT5897xwczozOM8qmVAudXYbEMMEVmwIHwS7TjBEZCnYRXn+o+MWSZYZr9RnWKQskuVI85pSALS06hxPs4yNf5tgHtoJClm8Wna7bP/aG7nCA3f5oMBhtksF49NYbYa/vbqKL6jhfHLS++JGmuWQKqCDGzD03haAgGXAqWNn2c8NSQq/JFZvbVBHJTFBsxJf4ta1EONaZ/RTgTfXPiYJIY9YytJ2SQGKarCr2QvlPXFVAa2EaGiB+FxRcpTkwRbcS4lxg0LjaEY54xiiItU0Izbh1gWlCMkLBbrLtK3ZLtZRERYUfxnFZVA+Oy7KB8prkO2RZk+UOmdVk1iTyrLQ/64cSUZw1ab6k5dwLim1LGBd+QgB3vbKs3CkOS2tIZz0cahHhWw4Jtg09rDRgI4gCFjWE3NRCbnYkrmqyahJmFbLUcKFVg0RM2Cn/IxNA7NwOXP+G6wakyZ1tfNrcycTCUN7tZWL92vP9daP4/8nsuO8N+t6nYffkfX3I++gleoWOkIfG6ASdonM0RRSt0Ff0DX13xk7gRE68bW3t1TMv0F/h6J8f+kAY</latexit>

R
(µ

m
)

<latexit sha1_base64="qgqn0hivdM7xdhsikxKVQ+Qb04k="></latexit> R
(µ

m
)

<latexit sha1_base64="qgqn0hivdM7xdhsikxKVQ+Qb04k="></latexit>

L (µm)
<latexit sha1_base64="5kJ0588TAASV4cUc5OJBJgIF/bs="></latexit>

R

L<latexit sha1_base64="6dHcA7W1b3Evxnt5MfaViGXEyA0="></latexit>

|L̇
e
e
|(

µ
m

/s
)

<latexit sha1_base64="mEZzbKQS8mKhzVEqnMIOP+FWmEQ="></latexit>

✏̇L (µm/s)
<latexit sha1_base64="rVwmrTEaCAhre0+bRiNfxazFsWQ="></latexit>

Experiments
Brownian
Non-Brownian

Experiments
Brownian
Non-Brownian

e
<latexit sha1_base64="sRJaUwrtDH4LtXmMpOI684bGp5A="></latexit>b

<latexit sha1_base64="Pdu9ZX/k+xLTyppzLk0B1q7kF0Q=">AAADtnicbZJLb9NAEMe3MY8SXik9clkRIXGIohiQ6LESCPVUlYqkleIQrdfjZNV9uN5xGstaiTsfgit8JL4N68Si4DDS7o7mNyP9Z3biTAqLo9GvvU5w5+69+/sPug8fPX7ytHfwbGJNkXMYcyNNfhkzC1JoGKNACZdZDkzFEi7iq/c1v1hBboXRn7HMYKbYQotUcIY+NO8dRghrjNNq89q0ip2b9/qj4WhjdNcJG6dPGjubH3S+RYnhhQKNXDJrp+Eow1nFchRcgutGhYWM8Su2gKl3NVNgZ9VGvaMvfSShqcn90Ug30b8rKqasLVXsMxXDpW2zOjiI1X9xHUFjpG1pwPRoVgmdFQiabyWkhaRoaD0kmogcOMrSO4znwndB+ZLljKMfZTfScMONUkwnVRSnqavqh6bOtVDRkGKHrBqy2iGThkzaRJ06f/l+OJPVaZsWK+6m4azaptT/uWRI+6FzdXda4Mo3ZPIBjY1M6I3AJfUJA6oNUiuZRkhaQq4bIdc7EtcNWbcJeIWQWSGNbpEEpK+KPoBE5ut2YPkHli3Il7dt05P2TM49jNXtXM7dZn3D9rLuOpPXw/DNMPz0tn/88et2kffJc/KCvCIheUeOyQk5I2PCSUm+kx/kZ3AUfAkgWGxTO3vN8h+SfyzIfgNqNUJ1</latexit>

a
<latexit sha1_base64="uuh6esvD6U6eLX8ROPdGoPM0KlQ=">AAADtnicbZJLb9NAEMe3MY8SXik9clkRIXGIohiQ6LESCPVUlYqkleIQrdfjZNV9uN5xGstaiTsfgit8JL4N68Si4DDS7o7mNyP9Z3biTAqLo9GvvU5w5+69+/sPug8fPX7ytHfwbGJNkXMYcyNNfhkzC1JoGKNACZdZDkzFEi7iq/c1v1hBboXRn7HMYKbYQotUcIY+NO8dRghrjNNq89q0Ys7Ne/3RcLQxuuuEjdMnjZ3NDzrfosTwQoFGLpm103CU4axiOQouwXWjwkLG+BVbwNS7mimws2qj3tGXPpLQ1OT+aKSb6N8VFVPWlir2mYrh0rZZHRzE6r+4jqAx0rY0YHo0q4TOCgTNtxLSQlI0tB4STUQOHGXpHcZz4bugfMlyxtGPshtpuOFGKaaTKorT1FX1Q1PnWqhoSLFDVg1Z7ZBJQyZtok6dv3w/nMnqtE2LFXfTcFZtU+r/XDKk/dC5ujstcOUbMvmAxkYm9EbgkvqEAdUGqZVMIyQtIdeNkOsdieuGrNsEvELIrJBGt0gC0ldFH0Ai83U7sPwDyxbky9u26Ul7Jucexup2Ludus75he1l3ncnrYfhmGH562z/++HW7yPvkOXlBXpGQvCPH5ISckTHhpCTfyQ/yMzgKvgQQLLapnb1m+Q/JPxZkvwFm9UJ0</latexit>

c
<latexit sha1_base64="saLE5/IspM7NHX5vs01SvxkMRCM="></latexit> d

<latexit sha1_base64="EwuSvZbGaALwV3WIrJbA7rt9LEM="></latexit>

0.24
<latexit sha1_base64="sKCIEw6QJTmFQB9pyz4mCx0cZo4="></latexit>

1
<latexit sha1_base64="Mvlofl3T1Lw9f7WQOUprgrpqzOQ="></latexit>

0.7
<latexit sha1_base64="3IFgshB8mV4OJ3irkf6qRP2swrE="></latexit>

`p = 6 µm
<latexit sha1_base64="+SD/cbRfVTIe4PGBOnDox2ZsinI=">AAADvXicbZJLb9NAEMe3NY8SXinc4LIiQuIQRXFBgJAQleDQU1UqklaKo2i9Hjer7sP1jvOQtRJ3vgdX+Dp8G9aJRcFmJHtH85uR/v/RxJkUFofDXzu7wY2bt27v3encvXf/wcPu/qOxNUXOYcSNNPl5zCxIoWGEAiWcZzkwFUs4iy8/VvxsAbkVRn/BdQZTxS60SAVn6Euz7pMIpJxl9D19TSMaqaKMEFZYKudm3d5wMNwEbSdhnfRIHSez/d1vUWJ4oUAjl8zaSTjMcFqyHAWX4DpRYSFj/JJdwMSnmimw03JjwtHnvpLQ1OT+00g31b8nSqasXavYdyqGc9tkVbEfq//iqoLGSNvQgOnbaSl0ViBovpWQFpKiodWuaCJy4CjXPmE8F94F5XOWM45+o51Iw5IbpZhOyihOU1dWD02da6CiJkWLLGqyaJFxTcZNoo6d/3k/nMnyuEmLBXeTcFpuW+K0jOYMaS90rnKnBS68IZP3aWxkQpcC59Q39Kk2SK1kGiFpCLmqhVy1JK5qsmoS8Aohs0Ia3SAJSD8VfQKJzM+14PoPXDcgn1/bpkfNnZx6GKvrvZy6zfmGzWNtJ+ODQfhyEH5+1Tt8Vx/yHnlKnpEXJCRvyCE5IidkRDj5Sr6TH+Rn8CGAQAZ627q7U888Jv9EsPwNe+BDbQ==</latexit>

`p = 12 µm
<latexit sha1_base64="v6mXO9mgdHPMe7VRxT3HvLNhUV0="></latexit>

`p = 18 µm
<latexit sha1_base64="tPY38wy7m8u5kTSyZrv4g8OVkzA="></latexit>

µ̄
<latexit sha1_base64="6/dSOFWbZq3YhPIsDUrtJienfs0=">AAADqnicbZJNb9NAEIa3MR8lfLVw5LIiQuIQRTEgwbECDj1VJSJpq9iqdtfretX9cHfHaSPLv4AjV/hh/BvWiUVhzUj2juaZkd53NLSUwsF0+mtnEN25e+/+7oPhw0ePnzzd23+2cKayjM+ZkcaeUuK4FJrPQYDkp6XlRFHJT+jlp5afrLh1wuivsC55qsiFFrlgBHzpLKHE1omqmvO90XQy3QTuJ3GXjFAXx+f7g29JZliluAYmiXPLeFpCWhMLgkneDJPK8ZKwS3LBlz7VRHGX1hvFDX7lKxnOjfWfBryp/j1RE+XcWlHfqQgULmRtcUzVf3FbAWOkCzRA/iGthS4r4JptJeSVxGBwuxicCcsZyLVPCLPCu8CsIJYw8OsbJppfM6MU0Vmd0Dxv6vbBedMEqOpI1SOrjqx6ZNGRRUjUUeN/3g8jsj4KabVizTJO620LzeukIIBHcdO07rSAlTdk7BhTIzN8LaDAvmGMtQHsJNHAs0DIVSfkqifxpiM3IeFeIS+dkEYHJOPSTyWfuQTi53pw/QeuA8iKW9v4MNzJzEOqbvcy8379+cbhsfaTxZtJ/HYSf3k3OvjYHfIueoFeotcoRu/RATpEx2iOGFLoO/qBfkbjaBadRctt62Cnm3mO/oko+w16mjzu</latexit>

104
<latexit sha1_base64="l8alSzbcIGlBvnc494W4Vz4xb18="></latexit>

105
<latexit sha1_base64="2TK6BPS1aTnIPXyxTF6o7Akq12s="></latexit>

106
<latexit sha1_base64="9f6vKzGI3Mo6Qdv8RNfaFC0t9jo="></latexit>

107
<latexit sha1_base64="6hXUCY0Mr64BeNwxLA8J3yve0r4="></latexit>

✏̇t
<latexit sha1_base64="tfTxhxOzwutRAVPmdDLEZVuCwEo="></latexit>

(B/µ✏̇)1/4 (µm)
<latexit sha1_base64="f4oc8VxFIQYWzt8qz8cuT6vP0To="></latexit>

0.100.090.070.060.040.03

0.01

0.02

0.03

(c)
<latexit sha1_base64="3Gh8/SgIwIRdBFmbqPsnyGbJjxw="></latexit>

(b)
<latexit sha1_base64="e2dJL8HaA8t7Zegkd+j3mb5gS3E="></latexit>

(a)
<latexit sha1_base64="SwKECbmlmLo9imcNebk0o/ZEwPc="></latexit>

Figure 4.7: (a)Final dimensional radius as a function of contour length in experiments and
both types of simulations, for strain rates in the range ε̇ ∼ 0.3−0.61 s−1. The two dashed lines
show the mean radius for experiments (top) and Brownian simulations (bottom), which differ
slightly due to the two different methods for estimating R. (b) Final dimensional radius R as
a function of elastoviscous length (B/µε̇)1/4 in Brownian simulations for varying persistence
lengths `p, showing a linear dependence in agreement with Eq. (4.4). In these simulations,
L = 0.6µm, and ε̇ ∼ 105–107 s−1. (c) Collapse of all the data from experiments, Brownian
and non-Brownian simulations when plotted in dimensionless variables, showing a power-law
scaling of the form R/L ∼ µ̄−0.24.

For simplicity, we idealize a post-buckling coiled conformation as a perfect helix

parameterized by θ ∈ [0, 2mπ], where m is the total number of loops. The position of a

Lagrangian marker along the curve is then given by x = (R cos θ, R sin θ, λθ), where R is

the radius and λ is related to the pitch p = 2πλ. As the helix is compressed by the flow,

its pitch decreases while its radius increases as depicted in Fig. 4.8. This is a consequence
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of inextensibility, which dictates that

RṘ + λλ̇ = 0. (4.1)

During compression, viscous stresses due to the flow balance elastic forces inside the fila-

ment. In both experiments and simulations, we observe that λ < R, which allows us to

approximate the dominant viscous force experienced by the helix as Fv ∼ ξ⊥ṗL, where

ξ⊥ is the coefficient of viscous resistance by unit length in the normal direction. The

associated viscous dissipation can then be estimated as

Figure 4.8: Schematic illustrating the compression of an inextensible ideal helix of radius
R and pitch p as used for scaling arguments.

Φv ∼ ξ⊥ṗ
2L ∼ ξ⊥λ̇

2L, (4.2)

and must balance the rate of change of elastic bending energy due to compression. For a

helical conformation, the bending energy is given by EB = BLR2/2(R2 + λ2)2. Using the

kinematic relation (4.1) and the fact that λ < R, we find its rate of change as

ĖB ∼ BL
λλ̇

R4
. (4.3)

In absence of inertia, we seek a balance between Φv and ĖB [7]. Recalling that λ̇ ∼ ε̇L as

found in Figure. 4.6(c), we arrive at
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R ∼
(
B

ξ⊥ε̇

)1/4

i.e.,
R

L
∼ µ̄−1/4. (4.4)

This scaling law suggests that the helix radius is independent of contour length L and

has only a weak dependence on compression rate ε̇. Experiments typically have access to

a limited range of strain rates, and as a result the sampling of the three decades of µ̄ in

Fig. 4.7(a) was primarily due to variations in filament length while keeping ε̇ in the range

∼ 0.4 − 0.6 s−1. This explains why no dependence on µ̄ was found. To further test the

scaling law and probe the dependence on flow strength, we performed additional Brownian

simulations in which the strain rate was varied while keeping L constant. The measured

radius for three different values of `p/L is displayed in Fig. 4.7(b) and shows a clear

collapse of the data with an exponent close to −1/4 when plotted in dimensionless form.

This corroborates the scaling prediction and further confirms that thermal fluctuations

play a secondary role. Finally, we display all the data from experiments and both types of

simulations in dimensionless form in Figure 4.7(c). A similar collapse is found, with some

scatter arising mainly from fluctuation-induced defects and from the two distinct methods

for estimating R. A numerical fit provides an exponent of −0.24, in excellent agreement

with the proposed scaling law.

4.4 Origin of coiling: mode interaction

So far we have discussed the key features of the filament morphologies and have

quantified the emerging coiled conformations through various order parameters. Now we

proceed to explain the emergence of helical morphologies using a 3D weakly nonlinear

stability analysis.
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4.4.1 Linear stability analysis

Previous 2D linear analyses in planar flows have been very successful at predicting

the onset of buckling and subsequent mode shapes [33, 111, 112, 143]. We will attempt

to show how the interaction of pairs of planar eigenmodes growing in different planes is

responsible for the observed 3D helices. In past studies of viscous buckling, the role of

thermal fluctuations was shown to be limited to triggering the instability while smooth-

ing the buckling transition [2, 7, 112]. We neglect fluctuations in our theory and start by

performing a three dimensional linear stability analysis in the spirit of [111].

In the reference frame of the translating filament, the local flow field is well approx-

imated by a planar compressional flow in experiments and Brownian simulations, and by

a uniaxial compressional flow in non-Brownian simulations; we focus here on the former

case and thus take the dimensionless flow field to be u∞ = (−x, y, 0). In the base state,

the filament is straight with its center at the stagnation point and its axis aligned with the

direction of compression: x0(s) = sx̂ with s ∈ [−0.5, 0.5]. Its motion is described using

local slender-body theory for low-Reynolds-number hydrodynamics [159],

µ̄ (ẋ− u∞) = (I + xsxs) · [(Txs)s − xssss] , (4.5)

where the elastoviscous number µ̄ appears as the sole control parameter. Indices in Eq. (4.5)

denote differentiation with respect to arclength, with xs describing the local tangent vector.

The scalar T (s) is the internal tension that enforces filament inextensibility. Eq. (4.5) is

accompanied by force- and moment-free boundary conditions: xsss = xss = T = 0 at

s = ±1/2. In the base state, the compressional flow induces a parabolic tension profile

T0(s) = 1
4 µ̄
(
s2 − 1

4

)
typical of undeformed filaments in linear flows [33,111].

The straight configuration is perturbed as x(s, t) = (s, hy, hz), where hy(s, t) and

hz(s, t) are in-plane (x, y) and out-of-plane (x, z) shape perturbations, respectively, and

are assumed to be small O(ε) quantities. We first perform a linear analysis and simplify
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Eq. (4.5) to

µ̄ (ẋ− u∞) = T0xss + 2T0,sxs − xssss +O(ε2), (4.6)

where the velocity field experienced by the filament is u∞ = (−s, hy, 0). We seek normal-

mode perturbations of the form {hy, hz} = {Φy(s),Φz(s)} exp(σt), where Φy and Φz are

in-plane and out-of-plane mode shapes and σ is the complex growth rate. Inserting this

ansatz into Eq. (4.6) yields two eigenvalue problems in the y and z directions:

µ̄ (σ − 1) Φy = L[Φy], (4.7)

µ̄ σΦz = L[Φz], (4.8)

where L is the differential operator L[Φ] = T0(s)Φss + T0,s(s) Φs − Φssss. Inspection of

Eqs. (4.7)–(4.8) shows that the eigenvalue problems in the two orthogonal planes are

uncoupled and thus have their own growth rates (σy, σz). Incidentally, the two eigenvalue

problems are found to be identical under the transformation σz = σy − 1. This points to

a key aspect of the eigenspectrum: for a given value of µ̄, in-plane and out-of-plane mode

shapes are identical but have offset growth rates. Out-of-plane deformations grow slightly

more slowly as a consequence of the 2D nature of the flow; both growth rates would be

identical in uniaxial flow.

The eigenvalue problem of Eq. (4.7) was solved numerically using a Chebyshev

spectral collocation method with boundary conditions Φyss = Φysss = 0 at s = ±1/2,

and results are summarized in Figure 4.9. The growth rates Re[σy] of unstable modes

are plotted versus µ̄ in Fig. 4.9(a). In very weak flows, all modes are stable with negative

growth rates. As the elastoviscous number is increased, a supercritical pitchfork bifurcation

occurs giving rise to the first onset of buckling. In agreement with past planar analyses

[111–113], the first buckling threshold is found to be µ̄c ≈ 153.2 with an even mode shape

(Φ(−s) = Φ(s)) resembling the canonical C shape typical of Euler buckling. At yet larger

values of µ̄, higher-order buckling modes with larger wavenumbers are excited and can
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become unstable, leading to the complex eigenspectrum of Fig. 4.9(a). Three essential

features stand out: (i) at large elastoviscous numbers, the first two eigenvalues {σ(1)
y , σ

(2)
y }

dominate the spectrum and the corresponding eigenmodes are expected to dictate the

emergent morphologies; (ii) these two dominant eigenmodes always come in an odd–even

pair, i.e., if Φ(1) is odd then Φ(2) is even and vice-versa; (iii) the difference in growth rate

between these two dominant modes becomes negligible in strong flows. This last point is

made clear in the inset of Fig. 4.9(a), where the difference ∆σ between the two growth

rates is seen to decay rapidly with µ̄.
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Figure 4.9: (a) Growth rates of unstable planar eigenmodes plotted vs. elastoviscous
number. As µ̄ increases, additional modes become unstable. The two dominant eigenvalues
are colored in red and blue and labeled as either even (E) or odd (O) functions of s.
Inset: difference ∆σ between the two most unstable eigenvalues as a function of µ̄, showing
convergence in strong flows. (b) Eigenmodes associated with the two largest eigenvalues for
a value of µ̄ = 1.8× 104 corresponding to the green dot in (a). The dominant mode Φ(1) is
odd, whereas Φ(2) is even.

We are now in a position to explain the emergence of helicoidal shapes. In a strong

flow, unstable eigenmodes are planar but can develop and grow in any plane containing the

flow axis. In addition, dominant modes always come in odd–even pairs with nearly identical

growth rates. When a straight filament is perturbed, there is thus a strong likelihood for

both modes to grow simultaneously. The superposition of two adjacent odd–even planar
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modes such as those shown in Fig. 4.9(b) and growing in different planes produces a coiled

three-dimensional conformation that resembles a helix and continues to grow as such,

with the two modes interacting as a consequence of geometric nonlinearities. A similar

mechanism was previously proposed to explain the buckling of elastic rods in soft elastomer

matrices [160], though the governing equations and forces at play are very different in that

problem.

4.4.2 Amplitude equations: weakly nonlinear theory

This modal interaction process can be formalized by deriving a nonlinear ampli-

tude equation of the Ginzburg-Landau form [142, 161]. At the onset of buckling we make

the assumption that the tension profile inside the filament can still be approximated by

the parabolic tension in the undeformed base state. We start by expanding the govern-

ing equation Eq. (4.5) with this tension much in the spirit of Monge representation but

retaining the nonlinear terms. Thus we have:

µ̄ ẋ = µ̄u+ T0xss + 2T0,sxs − xssss − xs(xs · xssss). (4.9)

Recognizing the linear operator from the stability analysis the above equation can be

written as:

µ̄ ẋ = µ̄u+ L[x]− xs(xs · xssss), (4.10)

We now expand the transverse deformations on the basis of the first two linear eigenmodes

as they dominate the unstable spectrum: hy,z(s, t) = Ay,z1 (t)Φ1(s) +Ay,z2 (t)Φ2(s). Our aim

is to derive ordinary differential equations for the amplitudes of the perturbations that

illustrate coupling between unstable modes. To this end, we first explicitly derive the

functional form of the nonlinear terms, which we denote by N (s, t) = xs(xs · xssss). We
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first calculate:

β ≡ xs · xssss = (1, hys , h
z
s) · (0, hyssss, hzssss) = hysh

y
ssss + hzsh

z
ssss. (4.11)

Using the chosen form of expansion of the perturbations on the basis of eigenfucntions the

above expression can be written as:

β =
(
Ay1Φ(1)

s + Ay2Φ(2)
s

)(
Ay1Φ(1)

ssss + Ay2Φ(2)
ssss

)
+
(
Az1Φ(1)

s + Az2Φ(2)
s

)(
Az1Φ(1)

ssss + Az2Φ(2)
ssss

)
.

(4.12)

The above expression can be further simplified to:

β =
[
(Ay1)2 + (Az1)2

]
γ1(s) + [Ay1A

y
2 + Az1A

z
2] γ2(s) +

[
(Ay2)2 + (Az2)2

]
γ3(s). (4.13)

In the above expression, the functions {γ1, γ2, γ3} are given by:

γ1 = Φ(1)
s Φ(2)

ssss, (4.14)

γ2 = Φ(1)
s Φ(2)

ssss + Φ(2)
s Φ(1)

ssss, (4.15)

γ3 = Φ(2)
s Φ(2)

ssss. (4.16)

The transverse components of the nonlinear term N (s, t) are then obtained as Ny = hysβ

and Nz = hzsβ, and we emphasize that these nonlinear terms couple in-plane and out-of-

plane modes.

We now proceed to derive amplitude equations of the Ginzburg-Landau form, first

starting with the y component of the slender-body equation. Inserting the expansion for

hy(s, t) into Eq. (4.10) yields

µ̄Φ(1) dAy1
dt

+ µ̄Φ(2) dAy2
dt

= µ̄
(
Ay1Φ(1) + Ay2Φ(2)

)
+ Ay1L[Φ(1)] + Ay2L[Φ(2)]−Ny. (4.17)

Recalling that the eigenfunctions satisfy Eq. (4.7), this simplifies to

µ̄Φ(1) dAy1
dt

+ µ̄Φ(2) dAy2
dt

= µ̄Ay1σ1Φ(1) + µ̄Ay2σ2Φ(2) −Ny. (4.18)
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In order to derive the amplitude equation for each mode it is tempting to use the or-

thogonality of eigenfunctions. However we are plagued with a subtle issue. The linear

operator L appearing in the linearized stability problem is not self-adjoint. As a result,

the computed eigenfunctions are not orthonormal to each other. In order to proceed with

the non-linear theory, we need to find the adjoint L† of the linear operator (as derived

in Appendix C) and associated adjoint eigenfunctions, which we denote by φ†. This sub-

tlety was previously identified by Guglielmini et al. [142] in their weakly nonlinear theory

for clamped filaments in 2D stagnation point flows. Using the orthogonality of adjoint

eigenfunction we obtain the amplitude equations as:

dAy1
dt

= σ1A
y
1 −

1

µ̄

〈Ny, φ†(1)〉
〈φ†(1),Φ(1)〉 , (4.19)

dAy2
dt

= σ2A
y
1 −

1

µ̄

〈Ny, φ†(2)〉
〈φ†(2),Φ(2)〉 , (4.20)

where:

〈a(s), b(s)〉 =

∫ 1/2

−1/2

a(s)b(s) ds, (4.21)

is the inner-product definition. If we neglect the nonlinear terms in the above amplitude

equations, we will recover the prediction of the linear stability problem, where unstable

modes grow exponentially with respective growth rates given by the eigenvalues. Nonlinear

terms not only introduce additional complexity but also couple the various modes. We

can similarly obtain amplitude equations for the out-of plane problem:

dAz1
dt

= (σ1 − 1)Az1 −
1

µ̄

〈Nz, φ†(1)〉
〈φ†(1),Φ(1)〉 , (4.22)

dAz2
dt

= (σ2 − 1)Az2 −
1

µ̄

〈Nz, φ†(2)〉
〈φ†(2),Φ(2)〉 . (4.23)

The fact that the growth rates of the out-of-plane modes are smaller compared to in-plane

modes is evident from the the linear terms. All four amplitude equations (4.19)–(4.23)

are coupled to each other through the nonlinear terms and thus need to be integrated

numerically.
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4.4.3 Spontaneous symmetry breaking

We can now integrate the system of amplitude equations to study the evolution of

the filament morphology as predicted from the nonlinear theory. We start with an entirely

planar initial condition that has contributions from only the dominant mode. We can

write this as:

A(0) =




Ay1(0)

Ay2(0)

Az1(0)

Az2(0)




= ε




1

0

1

0



, (4.24)

where ε ≈ 10−4 is a small parameter typical of the amplitude at the initiation of the

buckling. In Figure 4.10 we show the time evolution of the amplitudes for µ̄ = 1.8 × 104

with dominant eigenmodes as shown in Fig 4.9.
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Figure 4.10: Time evolution of the amplitudes of modes for µ̄ = 1.8× 104.

A number of interesting features stand out from the solution of this ODE system.

First we notice that the nonlinearities are sufficient for amplitude saturation. Second, the

nonlinear coupling sets a non-zero amplitude for the mode Φ(2)(s). This solidifies our idea

of mode-interaction and indeed now a linear superposition of the even and odd modes lead

to a coiled conformation for the filament. The evolution of the filament morphology as
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given by x = [s, hy(t), hz(t)] is shown in Figure 4.11.
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Figure 4.11: Shape evolution of a filament from nonlinear theory (left) and non-Brownian
simulations (right) for µ̄ = 1.8× 104. On the two orthogonal planes on the left we show the
projections of the conformations that are identical to the dominant even and odd modes of
the linear stability analysis shown in Figure 4.9.

Comparison of the theoretical prediction against full nonlinear simulations from

non-Brownian filaments show remarkable agreement. In both the cases we find that at the

onset of buckling the filament remains planar: consistent with the result of linear stability

analysis. However the unstable modes interact soon in the presence of geometric nonlin-
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earities that lead to a spontaneous symmetry breaking giving way to helical structures.

Oscillations in amplitudes as seen in Figure 4.10 lead to rotation of the chiral structure in

the space of shapes. Interestingly in weak flows (for µ̄ < 8 × 104), when the eigenvalues

are well separated we do not observe growth of adjacent modes from the nonlinear theory.

This suggests that the nonlinearities are not sufficient to excite growth of the secondary

mode and as a result the filament conformation remains planar.

4.5 Conclusion and outlook

We have elucidated the coiled morphologies of actin filaments in compressional flow

through a combination of experiments, simulations, scaling analysis and weakly nonlin-

ear stability theory. The two distinct approaches used in numerical simulations highlight

the robustness of this phenomenon, in which neither Brownian fluctuations nor a three-

dimensional flow field are necessary conditions for helical buckling. The stability theory also

supports this idea and explained the origin of these structures in a simple two-dimensional

stagnation point flow. As uncovered in our analysis, the key to helical coiling is the nature

of the eigenspectrum associated with the linearized buckling problem, in which dominant

eigenmodes come in odd–even pairs with nearly identical growth rates and interact nonlin-

early to form helicoidal shapes. Our analysis is an addition to the study of post-buckling

mode interactions that are often responsible for non-planar structures [162]. Remark-

ably, this distribution of eigenvalues is quite generic, and helical buckling has also recently

been observed for very flexible filaments in shear flow as illustrated in Figure 4.12, where

the dynamics is more subtle due to the non-stationary base state of a tumbling straight

filament.
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Figure 4.12: Three-dimensional buckling of a very long actin filament placed in a linear
shear flow.

The helicoidal shapes in this case are not as regular as in purely compressional flow,

and are also unsteady as the filaments undergo tumbling by a tank-treading motion. We

have also not discussed the energetic aspect of helical buckling as probed in [157]. Helix

formation is essentially supported by a favorable energetic landscape as shown in Figure

4.13. A filament that is forcefully restricted to buckle and compress in two dimensions

indeed shows a monotonic growth of its bending energy that is avoided by the provision

of coil.
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Figure 4.13: Evolution of the total bending energy in planar and fully three-dimensional
Brownian simulations. The planar simulations were stopped when parts of the filament
come in contact. Parameters: `p/L = 200 and µ̄ = 5× 105.

The fundamental mechanism highlighted by our analysis should advance our un-

derstanding of these various phenomena and may also be exploited for the controlled

microfabrication of chiral objects from one-dimensional elastic filaments.

This chapter is primarily based on the material that is presently under review and

was authored by Brato Chakrabarti, Yanan Liu, John LaGrone, Ricardo Cortez, Lisa

Fauci, Olivia du Roure, David Saintillan and Anke Lindner [8]. The dissertation author

performed numerical simulations and worked on theoretical modeling for this paper.
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Chapter 5

Spontaneous oscillations of active

microfilaments

5.1 Introduction to active filaments

In the previous chapters we have discussed dynamics and morphologies of actin fil-

aments in two canonical flows. We term the studied actin polymers as ‘passive’ filaments

that are simply deformed by the hydrodynamic forces and respond to thermal fluctuations

that obey the fluctuation-dissipation theorem. In this chapter we will focus on the dy-

namics of ‘active’ polymers or filaments. Typical of active matter problems, the dynamics

of these filaments is driven by non-equilibrium processes where some agent converts in-

ternal chemical energy to directed motion [163]. Canonical example of well studied active

polymer system include motility assays. Here biopolymers like actin and microtubule are

propelled on carpets of motor proteins anchored on a substrate, which results in directed

motion [164–167]. Mixtures of active and passive components are a characteristics of eu-

karyotic cells with the active cytoskeleton on the one hand and an embedded large variety

of passive colloidal and polymeric objects on the other hand. Here, an enhanced random
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motion of tracer particles has been observed [168]. An extensive review of the intriuging

dynamics of active polymers is beyond the scope of this thesis and the interested reader is

pointed to [169]. This chapter focuses on one canonical case of active filaments related to

cilia and flagella that can oscillate spontaneously due to the action of molecular motors.

5.2 Dynamics of cilia and flagella: overview

Cilia and flagella are thin hair-like cellular projections that play a variety of crucial

roles where motion at the cellular level is required. Flagella, found on sperm cells and in

a number of protozoa, enable swimming in viscous media by propagating bending waves

along their axis [17]. Cilia are typically shorter than flagella and beat in an asymmetric

whipping pattern. The coordinated beating in carpets of cilia gives rise to ‘metachronal

waves’ that allow organisms such as Paramecium to swim efficiently. Motile cilia also

play a crucial role in ovum transport and in transport of mucus across the respiratory

track, known as mucociliary clearance [170]. The movement of the cilium is produced

by the bending of its core known as the axoneme. The axoneme architecture, which is

illustrated in Figure 5.1, has been remarkably conserved across evolution [171]. It involves

nine peripheral microtubule doublets known as the ‘A–B’ microtubules [17], which are

arranged in regular intervals and centered around a pair of singlet microtubules. The

outer doublets are linked to a sheath around the central pair by radial spokes and are

connected among themselves through protein linkers known as nexin links. The network

of links along with the radial spokes provide constraints that help to maintain the structural

integrity of the axoneme. This characteristic arrangement of microtubules that extends

for the entire length of the axoneme (10–200µm) is found in most eucaryotic flagella and

cilia and is known as the ‘9+2’ structure [17].
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Figure 5.1: (a) Thin section electron micrograph of axonemes of the green algae Chlamy-
domonas reinhardtii. Reproduced from Smith and Lefebvre [172]. (b) A simplified schematic
of the cross-section of an axoneme showing the ‘9+2’ structure from [173].

Thousands of dynein molecular motors are distributed along the A-tubule in groups

that are responsible for force generation. The heads of these motors extend to the B-tubule

of the adjacent doublet [174, 175]. In the presence of adenosine triphosphate (ATP),

the motor proteins undergo cycles of attachment and detachment generating forces that

cause sliding between the doublets. It has been shown that in demembraneted flagellar

axonemes this sliding can actually cause microtubules to slide apart [176]. However, inside

cilia and flagella the protein linkers (nexin links) as well as the basal structure prevent

free sliding, leading instead to bending deformations [17]. In swimming spermatozoa, these

deformations take the form of bending waves that propagate along the flagellum from head

to tip [175]. These highly coordinated motions suggest a complex regulation mechanism

for the action of molecular motors along the length of the axoneme. While the structure

of the axoneme and the mechanism for internal shear generation by dynein motors is

understood [177], it still remains unknown how spontaneous oscillations can emerge from

the coordinated action of thousands of molecular motors.
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A number of approaches have been proposed to explain the spontaneous gener-

ation of oscillations in actuated elastic filaments. Several such models coarse-grain the

role of molecular motors and the internal mechanics of the axoneme and focus instead

on qualitative beating patterns that resemble those of cilia or flagella. One such recent

approach [178–180] models the spontaneous oscillations observed in flagella as a buckling

instability reminiscent of the classical flutter problem [181] in the presence of a follower-

force. In a similar spirit, it was previously shown [182] that self-propelled Brownian par-

ticles connected as a chain can display periodic deformations that mimic ciliary beating

patterns. In another model, Goldstein et al. [183] prescribed a suitable form of the internal

shear force density to induce spontaneous oscillations resembling the bending waves seen

in sperm.

On the other hand, there have also been considerable efforts over the last few

decades in the development of theoretical models that capture some aspects of the geo-

metric details of the axoneme and motor activity in an attempt to explain experimentally

observed beating patterns. The bulk of these models rely on some form of geometric

feedback from the axoneme on the activity of the molecular motors. The three geomet-

ric features that may be involved in this feedback are: (a) curvature, (b) inter-doublet

distance and (c) sliding displacement. In the curvature-controlled models, the dynein

activity is regulated by the instantaneous curvature or by a delayed curvature of the

axoneme [184–186]. Once the curvature exceeds a predefined threshold the dyneins are

de-activated. This feedback mechanism was able to produce propagating wave patterns

as observed in flagella [185, 186] as well as ciliary beating patterns [184]. Recently it has

been proposed [187] that the breaststroke-like beating patterns of Chlamydomonas are

best explained through curvature-controlled feedback. However, these models coarse-grain

the detailed kinetics of dynein activity. The geometric-clutch model [188] instead argues
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that dynein activity is regulated by inter-doublet separation. This separation is governed

by the transverse force generated from stretched nexin links in a bent configuration that

further dictates the probability of formation of dynein bridges. The attachment and de-

tachment of dynein is determined dynamically from the instantaneous transverse force.

This model has been able to reproduce both flagellar and ciliary waveforms. While the

initial discrete model [188] had a poor model of hydrodynamics, a recent continuum exten-

sion [189] includes a more detailed hydrodynamic model. It was shown by [189] that the

excitable dynein model can be mapped back to the Fisher-Kolmorogov equation, which

admits traveling wave solutions. However, as pointed out in [174], their model [190] does

not lead to self-regulated saturation of the unstable modes of oscillation and instead relies

on the addition of stiff non-linear springs. Finally, the sliding control model assumes a

linear relationship between the internal shear force and sliding displacements. Other stud-

ies [191–193] have prescribed the internal shear force to have a form of traveling wave that

results in sperm-like beating patterns. However, this approach not only sets the intrinsic

beating frequency but also coarse-grains the dynamics of the molecular motors. Sliding

control models can also be equipped with a two-state model for molecular motors that de-

pends on both the sliding displacement and the rate of sliding [175,194]. Beyond a critical

activity of the motors, a Hopf bifurcation takes place leading to spontaneous oscillations

of the filament. Numerical simulations [174,175,195] involving two-state models have been

performed only close to the bifurcation threshold and in the small curvature limit. These

simulations suggest that for a clamped filament bundle, bending waves propagate from

the tip to the base (retrograde) as opposed to the base-to-tip (anterograde) propagation

observed in swimming sperm. A change of boundary conditions [193] or including basal

compliance [175] can affect the direction of bend propagation. Nevertheless, results from

weakly nonlinear theories, while valid close to the bifurcation, may not provide an accurate
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picture of the far-from-equilibrium, geometrically nonlinear cases of beating.

Oriola et al. [174] recently proposed a detailed microscopic description of dynein

kinetics coupled to flagellar shape in the framework of sliding controlled beating. Their

model led to the saturation of unstable modes from nonlinear interactions without any

additional need for nonlinear springs [189,190]. However, their analysis [174] was limited to

the geometrically linear small-curvature limit close to the bifurcation. While the observed

waves resembled flagellar waveforms, their direction was retrograde. In the present paper,

we use the microscopic kinetic model of Oriola et al. [174] to derive a more complete

set of nonlinear governing equations that include hydrodynamic interactions and can be

solved numerically. We discover that, when all the nonlinearities are retained, anterograde

bend propagation can occur away from the bifurcation and results purely from nonlinear

interactions of the dynein activity with axoneme geometry and hydrodynamics.

The chapter is organized as follows. First, we present in Sec. 5.3 the geometri-

cally nonlinear model for a microtubule bundle and dynein activity that follows Oriola et

al. [174]. We then discuss in Sec. 5.4 the various beating patterns away from equilibrium,

transitions in the direction of wave propagation, and the dependence of the amplitude

and frequency of the bending waves on the level of activity of molecular motors. The

model is also modified to allow for the possibility of asymmetric beats, and we show that

an appropriate choice of parameters can induce ciliary beating patterns. Following past

studies [174, 196], we analyze the beating patterns using principal component analysis in

Sec. 5.5.2. Finally, the disturbance velocity fields and their minimal representations in

terms of fundamental singularities of Stokes flow both in free space and next to a no-slip

wall are discussed in Sec. 5.6. These representations could provide a basis for studying

hydrodynamic interactions between spontaneously beating filaments and potential mech-

anisms for synchronization.
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5.3 Model for axonemal beating

5.3.1 Viscous dynamics of an elastic filament

Geometry and force balance: We idealize a beating flagellum or cilium as an

inextensible unshearable planar elastic rod submerged in a fluid with viscosity ν. Its

motion is described by a set of geometrically nonlinear equations following Euler’s elastica

theory [197], with viscous stresses captured by non-local slender-body hydrodynamics.

We have discussed various aspects of the elasticity and hydrodynamics in great detail

previously (see Chapter 2). Here we focus on deriving a set of simplified governing equation

for the planar case of the general elastica. As shown in Figure 5.2, we consider a filament

with length L and diameter a such that ε = a/L� 1, where ε is the slenderness ratio. We

impose that one end of the filament is fixed, as in the case of a cilium attached to a wall

or a flagellum affixed to a sperm head, and we assume clamped boundary conditions at

that end.

Figure 5.2: Schematic of an elastic rod of length L and arclength s that is clamped at
s = 0. The rod is represented as a space curve in the (x, y) plane, which we parametrize by
the tangent angle φ(s, t).

We parametrize the filament centerline with arc-length s ∈ [0, L], and in the case

of planar deformations, conformations are fully described by the tangent angle φ(s, t).
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Expressions for the tangent and normal vectors to the curve follow as

t̂ = cosφ êx + sinφ êy, (5.1)

n̂ = − sinφ êx + cosφ êy. (5.2)

The Lagrangian marker x(s, t) describing points along the centerline can alternatively

expressed as:

x(s, t) = x(0, t) +

∫ s

0

t̂(s′, t) ds′. (5.3)

The velocity at any point on the filament can be projected onto the tangent and normal,

yielding v = vtt̂ + vnn̂ ≡ ∂tx. It can be shown after manipulations that the velocity

components are related as

∂svt = ∂sφ vn, (5.4)

∂svn = ∂tφ− ∂sφ vt. (5.5)

The elastica is subjected to general contact forces F (s, t) = σt̂ + Nn̂ as well as out of

plane contact moments M (s, t) = M k̂. These have both passive and active contributions

resulting from elasticity and from molecular motor forces, which we discuss in Sec. 5.3.2.

Previously in 2.2.3 we dervied force and torque balance inside an elastic rod in absence of

inertia. Using that result we find:

fvis + ∂sF = 0, (5.6)

Ms +N = 0, (5.7)

where fvis(s, t) is the viscous force density exerted by the fluid on the filament. The

moment balance reduces to a scalar equation for planar deformations, and ∂sF ≡ fe(s, t)

is the internal force density resulting from elastic and active stresses.

Slender-body hydrodynamics: Given the assumption of slenderness ε � 1, we

model viscous stresses using non-local slender-body theory (SBT) [81,198–200] as discussed
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in Chapter 2. The configuration-dependent mobility operator where M can be split into

two parts: M = Λ + K. The first term Λ, known as the local operator, can be represented

in a simplified form for planar deformations and is given by:

Λ[fe](s) =
[
(2− c)n̂(s)n̂(s)− 2ct̂(s)t̂(s)

]
· fe(s), (5.8)

where c = log(ε2e) < 0 with ε = a/L. By analogy with resistive force theory [201,202] and

for later convenience, we also introduce local anisotropic friction coefficients

ξ‖ = − 1

2c
, ξ⊥ =

1

2− c, (5.9)

which satisfy the well-known property: ξ⊥/ξ‖ → 2 as ε → 0. The second term K in the

mobility relation captures hydrodynamic interactions between distant parts of the filament

as discussed in Chapter 2.3. In 2D we can represent it as follows:

K[fe](s) =

∫ L

0

[
I + R̂(s, s′)R̂(s, s′)

|R(s, s′)| · fe(s′)−
I + t̂(s)t̂(s)

|s− s′| · fe(s)
]
ds′, (5.10)

where R(s, s′) = x(s)−x(s′) and R̂ = R/|R|. For the sake of simplicity, we also introduce

the notations

udt (s) = K[fe](s) · t̂(s), udn(s) = K[fe](s) · n̂(s). (5.11)

Using these definitions along with relations (5.4)–(5.5), we can rewrite the equations of

motion along the tangent and normal directions. After algebraic manipulations and using

the fact that ∂sn̂ = −∂sφ t̂, we arrive at:

σss −
(

1 +
ξ‖
ξ⊥

)
Nsφs −Nφss −

ξ‖
ξ⊥
σφ2

s = ξ‖
(
φsu

d
n − ∂sudt

)
, (5.12)

Nss −
ξ⊥
ξ‖
Nφ2

s + σφss +

(
1 +

ξ⊥
ξ‖

)
σsφs = ξ⊥

(
8πν φt − udtφs − ∂sudn

)
, (5.13)

Ms +N = 0, (5.14)

which are statements of the tangential force, normal force and moment balances, respec-

tively.
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Boundary conditions: We assume the filaments have one fixed end at s = 0,

and thus vt(0, t) = vn(0, t) = 0. On using the force balance in the tangential and normal

directions at s = 0, this condition results in

(σs −Nφs)
∣∣
s=0

= 0, (Ns + σφs)
∣∣
s=0

= 0. (5.15)

The other end of the filament at s = L is force- and torque-free, which translates to

σ(L, t) = N(L, t) = M(L, t) = 0. (5.16)

For a clamped filament that cannot rotate about the fixed point we prescribe a fixed

orientation of the tangent vector. Without loss of generality, we will assume that t̂(0, t) =

êx, and therefore

φ(0, t) = 0. (5.17)

We have yet to specify the nature of the active internal forces and induced moments that

drive the filament dynamics. Next, we present the model for internal axoneme mechanics

and for the kinematics of molecular motors that are responsible for spontaneous oscilla-

tions.

5.3.2 Forces, moment densities and motor kinetics

As a simplified model for the cross-linked flagellar bundle that composes the ax-

oneme, we resort to a two-dimensional projection of the three-dimensional structure as

illustrated in Figure 5.3. In the complete ‘9+2’ structure, the molecular motors connect-

ing pairs of doublets lead to sliding forces that result in deformations. The structure of

the axenomal cross-section, as depicted in Figure 5.1, involves a cyclic arrangement of the

dyneins, and therefore motors on opposite sides of the axoneme operate antagonistically, as

in a ‘tug-of-war’. To capture this process within a minimal framework, we follow previous
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models [174,175] and idealize the axoneme as a pair of two polar elastic filaments (+) and

(−) separated by a constant distance a that are able to deform in tandem in the plane of

motion. The centerline of this projected bundle is described by x(s, t) and the positions of

the two filaments are given by x±(s, t) = x(s, t)± (a/2)n̂(s, t), where n̂ is the unit normal

along the centerline.

Dynein motors extend from each filament, and bind with and walk along the op-

posite one, with the former acting as cargo. As the motors are activated, they push on

both filaments and thereby exert tangential sliding forces ±f(s, t). These forces result in

internal moments that can cause bending and induce an arc-length mismatch between the

two filaments, known as the sliding displacement:

∆(s, t) =

∫ s

0

(|∂sx−| − |∂sx+|) ds′ = a[φ(s, t)− φ0], (5.18)

where φ0 = φ(0, t) = 0 for clamped boundary conditions. The relative sliding of the

two filaments is not free, as it is resisted by nexin protein cross-linkers that act as linear

springs and also contribute to the net internal shear force. Indeed, as mentioned previously,

microtubules can actually slide apart in the absence of these linkers in demembraneted

flagellar axonemes [176]. Following Oriola et al. [174], we model the sliding force density

by coarse-graining the activity of the motors as

f(s, t) = ρ(n+F+ + n−F−)−K∆. (5.19)

Here, ρ = N /L is the mean density of motors along both filaments, and n± are the

fractions of motors on the (+) and (−) filaments that are in the bound state. F± is the

load exerted by individual (+) and (−) motors and K is the effective spring stiffness of

the nexin cross-linkers.
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Figure 5.3: Schematic of the simplified two-dimensional projection of the axoneme. In
this model, the axoneme is composed of two polar filaments x+ and x− and has centerline
x. Nexin links are shown as elastic springs that resist sliding ∆. Mechanical loads exerted
by bound dynein motors result in an internal shear force density ±f(s, t) that acts in the
opposite direction on the two filaments, generating an active internal moment.

By the law of action and reaction, the sliding forces ±f(s, t) are equal and opposite

on both filaments, and thus the net active force on an axonemal cross-section is zero.

However, an active internal moment is generated and competes against bending elasticity,

yielding

M(s, t) = Bφs − aF, (5.20)

where B is the net bending rigidity of the filament bundle and F (s, t) =
∫ L
s
f(s′, t)ds′.

The first term is the passive response from Euler-Bernoulli beam theory, while the second

term captures the action of molecular motors. On inserting this expression in the moment

balance Eq. (5.14), we obtain:

Bφss + af(s, t) +N = 0, (5.21)
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where N is the contact force in the normal direction. This relation highlights the mech-

anism by which the internal force density generated from bound dynein motors induces

internal moments that can cause bending and deformations of the bundle.

To complete the description of internal active forces, we must model motor binding

kinetics as well as motor loads. The dynein kinetics is described by a two-state mechano-

chemical model consisting of bound and unbound dyneins, with a constant total number

N of dyneins (bound or unbound) on both filaments. A single motor can bind with the

opposite filament with rate π and unbind with rate ε. The evolution of the bound motor

populations is described as

∂tn± = π± − ε±. (5.22)

The binding rate is proportional to the local fraction of unbound motors and given by

π± = π0(1 − n±), where π0 is the characteristic rate constant. The unbinding rate of

molecular motors is known to depend on the carried load [203]. In particular, experiments

with kinesin motors have shown that the dissociation rate increases exponentially with

F , and this functional dependence has previously been used in models of bidirectional

cargo transport by molecular motors [204] and of dynein kinetics inside the axoneme

[175]. Consistent with previous studies [174, 175], we thus express the detachment rate

as ε± = ε0n± exp(±F±/fc), where fc is a critical load beyond which rapid detachment

takes place. We would like to emphasize, however, that the emergent filament dynamics

explored in the following sections is insensitive to this functional choice, provided that

the detachment rate increases sufficiently fast with the carried load. Following previous

models [174,204] and experiments [203], we also assume a linear force–velocity relationship

for the molecular motors. At stall force f0, the motors are at complete rest, and the zero

load velocity is v0. Intermediate loads can then be estimated by linear interpolation as

F± = ±f0(1∓∆t/v0), where ∆t = aφt is the sliding velocity. With these assumptions, the
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internal sliding force density of Eq. (5.19) becomes

f(s, t) = f0ρ

(
n− ∆t

v0
ñ

)
−K∆, (5.23)

where n = n+ + n− and ñ = n+ − n−. It is well known that the binding and unbinding of

motors is a stochastic process due to the presence of intrinsic biochemical noise. In order

to model this effect, we also incorporate a multiplicative noise term in Eq. (5.22) of the

form nBr(s, t) = Teffδ(t− t′)δ(s− s′), where Teff is an effective temperature and where the

noise is delta-correlated in both space and time. Including fluctuations and the expressions

for the binding and unbinding rates, we rewrite the evolution equation for the fractions of

bound motors as

∂tn± = π0(1− n±)− ε0n± exp

[
f0

fc
(1∓∆t/v0)

]
+ nBr(s, t). (5.24)

This completes the model for motor kinetics and internal forces. It is important to em-

phasize the two-way feedback that exists between filament geometry and dynamics and

the kinetics of bound motors. Dynein activity causes internal shear and sliding of the fil-

aments, which contributes to the active moment. In turn, the sliding displacement causes

load-dependent binding and unbinding of motors and affects the magnitude of the internal

shear force, possibly giving rise to filament oscillations.

5.3.3 Non-dimensionalization

We non-dimensionalize arc-length by L and time by the characteristic correlation

time τ0 = 1/(ε0 + π0) of the dynein motors. The scale for internal elastic forces is given

by the characteristic bending force B/L2, which implies M[fe] ∼ B/L3, and finally the

internal motor force density is scaled by ρf0. It is also evident from the expression of

the sliding displacement that its appropriate scale is the axoneme diameter a. Non-

dimensionalization of the governing equations results in four dimensionless parameters:
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(a) Sp = L (8πν/Bτ0)1/4 is the sperm number that compares the characteristic time scale

of relaxation of a bending mode to the motor correlation time. Smaller values of Sp de-

scribe short and rigid filaments. (b) µ = Ka2L2/B compares the elastic forces generated

by the nexin links due to sliding to the characteristic magnitude of bending forces. (c)

µa = aρf0L
2/B is the measure of motor activity (that is proportional to the active force)

compared to bending forces. (d) ζ = a/(v0τ0) compares the diameter of the filament bundle

to the characteristic displacement due to motor activity.

With these scales, the dimensionless force density reads f(s, t) = n − ζ ñ∆t −

(µ/µa)∆, and the non-dimensionalized equations of motions are then given by

σss −
(

1 +
ξ‖
ξ⊥

)
Nsφs −Nφss −

ξ‖
ξ⊥
σφ2

s = ξ‖
(
φsu

d
n − ∂sudt

)
, (5.25)

Nss −
ξ⊥
ξ‖
Nφ2

s + σφss +

(
1 +

ξ⊥
ξ‖

)
σsφs = ξ⊥

(
Sp4 φt − udtφs − ∂sudn

)
, (5.26)

φss + µaf +N = 0. (5.27)

The dimensionless stochastic equations for bound motor populations read:

∂tn± = η(1− n±)− (1− η)n± exp [f∗(1∓ ζ∆t)] + Λw±, (5.28)

where η = π0/(ε0 + π0) is the duty ratio, f∗ = f0/fc is the ratio of the stall force to the

characteristic unbinding force, w± is a random vector drawn from a Gaussian distribu-

tion with zero mean and unit variance, and Λ is a numerical parameter characterizing the

strength of biochemical noise. In order to solve the above equations numerically we use

the expression for φt from Eq. (5.26) and insert it in the expression for the sliding veloc-

ity involved in the internal force density f(s, t), which then enters the moment balance

Eq. (5.27). On doing so, we obtain

µaζ ñ

[
Nss −

ξ⊥
ξ‖
Nφ2

s+ σφss +

(
1 +

ξ⊥
ξ‖

)
σsφs

]
− ξ⊥Sp4N

= ξ⊥Sp4
(
φss + µan− µφ

)
− ξ⊥µaζ ñ

(
udtφs + ∂su

d
n

)
.

(5.29)
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The above system of equations is subject to boundary conditions (5.15), (5.16) and (5.17).

5.3.4 Numerical methods and parameter selection

We solve the system of governing equations numerically by discretizing the filament

arc-length into M − 1 equal segments of size ∆s = L/(M − 1). Spatial derivatives are

handled using a second order accurate finite difference scheme. Non-local terms arising

from hydrodynamic interactions result in a dense linear system for the unknown tension σ

and normal force N . To avoid this costly system inversion, we instead employ an iterative

method. For a given filament conformation, we first solve for σ and N using Eqs. (5.25)

and (5.29) with the non-local terms evaluated at the previous time step. This problem

results in a band-diagonal linear system of size 2M × 2M that can be solved at a cost of

O(2M). While doing so we use zero velocity at the base and zero force at the end of the

filament as boundary conditions. We then evaluate the non-local terms and re-compute

the tension and normal forces. This process is repeated until convergence, and typically

3 to 4 iterations are required. Once σ and N are known, we use Eq. (5.26) to march

forward in time. This is done by a second order accurate backward-difference scheme

along with the clamped boundary condition at s = 0 and the moment free condition

at s = L. The evolution equation for the bound dynein motors given by Eq. (5.28)

is marched forward independently using an implicit Euler–Maruyama scheme, which is

adequate given the stochastic term. The numerical parameter Λ characterizing the strength

of noise in Eq. (5.28) is related to the effective temperature Teff as Λ = (Teff/∆s∆t)
1/2,

where ∆t is the simulation time step. Our numerical method scales linearly with the

number of discretization points. In most results presented here, we use M = 64–128 and

∆t = 5× 10−4–1× 10−5.
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Table 5.1: Table listing the numerical values of the dimensional parameters as reported in
various experiments.

Parameter Numerical Value Description

a 200nm Effective diameter of the axoneme [175]

L 50µm Length of human sperm flagellum [205]

B 0.9–1.7× 10−21 N m2 Bending rigidity of sea-urchin and bull sperm [175]

K 2× 103 N m−2 Nexin link stiffness for Chlamydomonas [174]

ξ⊥ 10−3–1 Pa s Normal drag coefficient in viscous media [174,189]

f0 1–5 pN Stall force for motor dynamics [174]

fc 0.5–2.5 pN Characteristic unbinding force of the motors [206]

v0 5–7µm/s Motor walking speed at zero load [206]

τ0 50 ms Correlation time of motor activity [174]

ρ 103 µm−1 Mean number density of motors [174]

The model involves a fairly large number of parameters, many of which can be

estimated from direct experimental measurements based on sperm flagella and the green

alga Chlamydomonas reinhardtii. In most calculations and unless otherwise noted, we use

the parameter values provided by Bayly and Wilson [189] and Oriola et al. [174], which

are summarized in Table 5.1. Note that the motor correlation time, τ0, which sets the

time scale in our model, is not known from measurements and must be guessed. Its chosen

value results in a beating frequency of 10 Hz similar to a human spermatozoa [174]. Based

on these values, we estimate the relevant dimensionless groups in Table 5.2. The sperm

number Sp and activity number µa are found to have the widest ranges, allowing for various

dynamical transitions and beating patterns as we explore next.
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Table 5.2: Range of the dimensionless groups of the problem estimated using the parameter
values of Table 5.1 .

Dimensionless number Numerical value

Sp ≡ L (ξ⊥/Bτ0)1/4 5–20

µa ≡ af0ρL
2/B 2 – 10 ×103

µ ≡ Ka2L2/B 50–100

f∗ ≡ f0/fc 2

ζ ≡ a/v0τ0 O(1)

5.4 Spontaneous filament oscillations

In this section, we systematically explore the parameter space through numerical

simulations of the non-linear equations and characterize transitions to spontaneous oscil-

lations and beating patterns. A summary of the various dynamical regimes and beating

patterns in the (Sp, µa) parameter space is presented as a phase chart in Figure 5.4.

5.4.1 Linear stability and geometrically linear regime

Before analyzing dynamics far from equilibrium, we briefly review results of the

linear stability analysis of Oriola et al. [174] and discuss the geometrically linear regime

of small curvature. The stability analysis reveals that for a given sperm number Sp there

exists a critical activity level µcrita above which the filament undergoes a Hopf bifurcation.

Above the bifurcation, a linear mode becomes unstable and grows exponentially while

oscillating with a characteristic frequency ω. The critical activity was reported to increase
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almost linearly with sperm number [174] as also observed in our simulations in Figure 5.4.

Note that Oriola et al. [174] used local resistive force theory instead of non-local slender

body hydrodynamics, and thus the instability threshold they predict differs quantitatively

from the one we observe. Nonetheless, our method was found to reproduce their results

if we neglect the non-local operator K and choose ξ⊥/ξ‖ = 2 in the local mobility tensor.

An increase in sperm number can be interpreted as an increase in viscosity resulting in

larger viscous drag forces. As a result, a higher motor activity is required to induce

an instability [207]. One can also appreciate this result based on reduced-order models

of molecular-motor-induced oscillations [194, 208]. In these minimal models, the filament

backbone is represented by a single lumped coordinateX and elasticity by a spring constant

k with a viscous damping of strength ζ. Larger sperm number can then be interpreted as

increased damping, resulting in an increased activity threshold for the onset of spontaneous

oscillations.

Close to the bifurcation, the instability induces a traveling wave that propagates

along the filament from tip to base (retrograde propagation). This direction of propa-

gation is a common feature of linearized sliding control models with clamped boundary

conditions [183, 190, 192, 193], but is inconsistent with the well-known beating patterns

of swimming spermatozoa, which exhibit anterograde wave propagation from base to tip.

It is important to point out that, unlike curvature control models, the present formula-

tion has no inherently preferred direction of wave propagation, which instead is selected

spontaneously by linear and nonlinear feedback mechanisms [175, 177]. Our results are

consistent with linear predictions [174], which also show tip-to-base propagation near the

Hopf bifurcation. Interestingly, most previous studies have focused on the geometrically

linear or weak activity regimes and have overlooked nonlinear couplings. It is unclear

a priori whether linear results adequately describe far-from-equilibrium dynamics, where
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the effects of nonzero tension and geometric nonlinearities become significant.

5.4.2 Large deformations in the nonlinear regime

Further away from the bifurcation, our numerical simulations of the fully nonlinear

sliding-control model reveal a second transition to base-to-tip (anterograde) wave propaga-

tion. This transition occurs at approximately twice the critical level of activity required to

trigger the first onset of oscillations: it is a truly nonlinear phenomenon that involves sat-

uration of motor kinetics in the presence of large deformations and internal tension forces,

and is beyond the scope of previously studied linearized [174] or weakly nonlinear [192]

models. It is worth noting that Bayly and Wilson [190] did study nonlinear dynamics

using a variant of the sliding-control model presented here. They were unable to observe

anterograde propagation even at finite amplitudes, and we attribute this discrepancy to

their model for the sliding force density, which did not involve feedback from nexin links,

and to their specific choice of dynein kinetics, which did not allow for self-sustained sat-

uration. The transition from retrograde to anterograde wave propagation with increasing

motor activity occurs through a narrow transitional band of intermediate states (gray re-

gion in the phase chart of Figure 5.4), whose width varies slightly with sperm number.

The dynamics in this regime appears chaotic and combines standing waves with waves

that switch quasi-periodically between the two directions of propagation. We also note

that the emergence of anterograde wave propagation is primarily due to the geometric

nonlinearities and happens even in the absence of non-local hydrodynamic interactions.
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Close to the bifurcation, the instability induces a traveling wave that propagates along the filament from tip to base
(retrograde propagation). This direction of propagation is a common feature of linearized sliding control models with
clamped boundary conditions [14, 21, 23, 24] but is inconsistent with the well-known beating patterns of swimming
spermatozoa, which exhibit anterograde wave propagation from base to tip. It is important to point out that, unlike
curvature control models, the present formulation has no inherently preferred direction of wave propagation, which
instead is selected spontaneously by linear and nonlinear feedback mechanisms [6, 8]. Our results are consistent with
linear predictions [5], which also show tip-to-base propagation near the Hopf bifurcation. Interestingly, most previous
studies have focused on the geometrically linear or weak activity regimes and have overlooked nonlinear couplings.
It is unclear a priori whether linear results adequately describe far-from-equilibrium dynamics, where the e↵ects of
nonzero tension and geometric nonlinearities become significant.

B. Large deformations in the nonlinear regime

Further away from the bifurcation, our numerical simulations of the fully nonlinear sliding-control model reveal a
second transition to base-to-tip (anterograde) wave propagation. This transition occurs at approximately twice the
critical level of activity required to trigger the first onset of oscillations: it is a truly nonlinear phenomenon that
involves saturation of motor kinetics in the presence of large deformations and internal tension forces, and is beyond
the scope of previously studied linearized [5] or weakly nonlinear [23] models. It is worth noting that Bayly and Wilson
[21] did study nonlinear dynamics using a variant of the sliding-control model presented here. They were unable to
observe anterograde propagation even at finite amplitudes, and we attribute this discrepancy to their model for the
sliding force density, which did not involve feedback from nexin links, and to their specific choice of dynein kinetics,
which did not allow for self-sustained saturation. The transition from retrograde to anterograde wave propagation
with increasing motor activity occurs through a narrow transitional band of intermediate states (gray region in the
phase chart of Fig. 4), where filament conformations and dynamics are characterized either by standing waves (at low
sperm numbers) or by waves that switch periodically between the two directions of propagation.

In addition to changes in the direction of wave propagation, it is apparent from the characteristic waveforms shown
in Fig. 4 that both sperm number and motor activity a↵ect the qualitative features of the beating patterns. We
explore these variations in Fig. 5, showing the dependence of amplitude, wavelength and frequency of the waveforms
as a function of µa for two di↵erent values of Sp. For measuring wavelength, we determine the zero crossings of a
given waveform, measure the distance between them as shown in the inset of Fig. 5(b), and average it over one period

Figure 5.4: Phase chart highlighting the various dynamical transitions and beating patterns
in the (Sp, µa) parameter space. Waveforms on both sides show characteristic filament
conformations, where the arrows indicate the direction of wave propagation. Simulations
for µ = 100, ζ = 0.3 and η = 0.14.

In addition to changes in the direction of wave propagation, it is apparent from the

characteristic waveforms shown in Figure 5.4 that both sperm number and motor activity

affect the qualitative features of the beating patterns. We explore these variations in Fig-

ure 5.5, showing the dependence of amplitude, wavelength and frequency of the waveforms

as a function of µa for two different values of Sp. To measure wavelength, we determine

the zero crossings of a given waveform, measure the distance between them as shown in

the inset of Figure 5.5(b), and average it over one period of motion to obtain λ. In the ret-

rograde regime, the amplitude and wavelength both increase monotonically with activity,
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while the beating frequency decreases. The second transition to anterograde propagation

causes all quantities to change abruptly as seen in Figure 5.5. After a significant reduction

across the transition, the amplitude starts to grow again with activity. Since the filament

is inextensible, this increase in amplitude is accompanied by a slight decrease in wave-

length. The frequency of oscillations increases with the transition to anterograde waves

and then decreases monotonically with µa. Recall that all times in the model are scaled by

the characteristic motor correlation time τ0. We find that setting its value to τ0 = 50 ms

produces dimensional beating frequencies in the range of f ∼ 6− 14 Hz.
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Figure 5.5: Dependence of (a) dimensionless amplitude, (b) dimensionless wavelength and
(c) frequency of the beating patterns on motor activity µa for two values of the sperm
number Sp. The dimensional frequency assumes the choice of τ0 = 50 ms for the motor
correlation time. Jumps in the data are associated with the transition from retrograde to
anterograde wave propagation. Simulations were performed with µ = 100, ζ = 0.3 and
η = 0.14.

At a fixed µa, increasing Sp tends to reduce the amplitude as viscous resistance be-

comes more important. It may seem counter-intuitive that the wavelength of oscillations

varies very little with Sp in the anterograde regime while the amplitudes differ signifi-

cantly. This stems from the fact that, at low sperm numbers and high activity levels, the

oscillations result in strong swaying motions as shown in Figure 5.4(i). These large angular

oscillations contribute to the large amplitudes observed in Figure 5.5(a) for Sp = 9. A

typical waveform resembling that of sperm cells is shown in Figure 5.6(a) and was obtained

for Sp = 12. In the simulation shown, waves propagate from base to tip with a frequency
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of f ≈ 8.8 Hz, which is consistent with that of spermatozoa.

5.4.3 Asymmetric beating patterns

The same ‘9+2’ microtubule doublet structure that is found in sperm flagella also

appears in pair in the bi-flagellate alga Chlamydomonas reinhardtii, which swims in a

breaststroke fashion. It is also present in the ciliary structures that cover epithelial cells as

well as unicellular organisms such Paramecium where they beat in asymmetric whipping

patterns. The asymmetric beating of cilia is key to metachronal co-ordination in ciliary

carpets that are useful for micro-organism motility as well as pumping and transport

of fluid in the body. We now discuss modifications of the sliding control model that

allow it to produce asymmetric beating patterns qualitatively similar to those of cilia and

Chlamydomonas.

Ciliary beating: biased kinetics

The generation of asymmetric beat patterns in models for cilia has previously been

approached in several ways. A geometric switch mechanism was proposed in [184, 209]

with a detailed model of internal nexin links exerting forces on the microtubules that

produced spontaneous oscillations of the filament. Dynein activation was initiated based

on local microtubule curvature, allowing for asymmetric beats with a typical frequency

of f ∼ 50 − 100 Hz. A two-state model of molecular motors [194] was used in [195] to

generate spontaneous oscillations close to the bifurcation limit, where an external flow was

used to break the symmetry of beating. Another set of models with an internal ‘engine’

that coarse-grains dynein activity into a geometric-conformation-driven shear force was

proposed in [208, 210] to generate cilia-like beating. Most recently, it was shown [211]

that geometric constraints with a dynamical law for tension can also generate asymmetric
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ciliary beating patterns. Most of these approaches, however, have not included detailed

motor kinetics. Here, we show that asymmetric beating patterns that resemble those of

cilia can be obtained within our sliding-control model through a biased dynein kinetics.

This is inspired by the recent continuum formulation of Bayly and Wilson [189] of the

geometric-clutch model [188], where a biased attachment-detachment probability was used

to generate Chlamydomonas-like breaststrokes.

Biased kinetics is simply achieved by specifying distinct values for the characteristic

binding and unbinding rate constants π±0 and ε±0 on both filaments. The actual binding

and unbinding rates are thus written as

π± = π±0 (1− n±), ε± = ε±0 n± exp(F±/fc). (5.30)

This bias in rates causes motors on one side of the model axoneme to detach faster than on

the other side, resulting in asymmetric bending. The new characteristic motor correlation

timescale is now defined as τ0 = 1/ [〈π0〉+ 〈ε0〉], which involves the mean binding and

unbinding rates:

〈π0〉 =
π+

0 + π−0
2

, 〈ε0〉 =
ε+0 + ε−0

2
. (5.31)

Simulating cilia-like beating patterns requires adjusting parameter values. Cilia

come in a variety of lengths in the range of L ∼ 4–20µm [184], but are typically shorter

than human sperm flagella. We choose a bending rigidity of B ∼ 5 × 10−23 N m2, which

is slightly larger than that reported in [210]. The characteristic time scale τ0 ≈ 40 ms is

chosen to produce a dimensional beating frequency of f ∼ 10–20 Hz, which is typical of

muco-ciliary transport [212]. With a choice of L ≈ 8µm, we estimate the typical sperm

number to be Sp ∼ 2–3. A typical waveform produced with these parameter is shown in

Figure 5.6(b), and is characterized by distinct power and recovery strokes with curvature

variations that propagate from base to tip. The waveform shown , which captures the

salient features of ciliary beats, oscillates at a frequency of f ≈ 13 Hz.
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Figure 5.6: Overlaid characteristic waveforms at different time instants over the course of
one beating period: (a) Symmetric sperm-like beat. Parameters: Sp = 12, µa = 12×103 and
µ = 100. (b) Asymmetric cilia-like beat obtained with biased dynein kinetics. Parameters:
Sp = 2.5, µa = 2 × 103, µ = 90, (π+

0 , ε
+
0 ) = (0.17, 0.73) and (π−0 , ε

−
0 ) = (0.25, 0.75). (c)

Asymmetric beating pattern resembling Chlamydomonas, obtained with biased kinetics in
presence of both sliding and curvature control. Parameters: Sp = 2.2, µa = 1.5 × 103,
µ = 80, f∗ = 1.9, (π+

0 , ε
+
0 ) = (0.24, 0.76), (π−0 , ε

−
0 ) = (0.39, 0.61), κ0 = −2.0 and κc = 12.

Breaststroke patterns: curvature control

As they perform their breaststroke, the two flagella of Chlamydomonas also undergo

asymmetric patterns, with distinctly different waveforms from those of cilia. There have

been fewer attempts in simulating these patterns. A modified version of the geometric-

clutch mechanism was used in [213] that involved force-velocity relationships allowing

for asymmetric flagellar beats similar to Chlamydomonas. Further developments of the

geometric-clutch model [189] with excitable dynein kinetics were able to reproduce breastroke-

like beating patterns. Recently, Sartori et al. [187] analyzed the axonemes of both wild-type

and mbo2 strains of Chlamydomonas. Through Fourier decomposition of waveforms and

a numerical fitting procedure, they found that sliding control provides a poor fit for the
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waveform. Instead, curvature-control mechanisms provide the best fit to experimental

data. Quite surprisingly, they noted that it is the rate of change of curvature that most

likely controls the dynein activity. They also reported that the flagella have a non-zero

static mode, suggesting an intrinsic curvature. However, their model neglected spatial

variations of the motor control mechanism by non-uniform dynein distributions.

Our approach to capturing the beating patterns of Chlamydomonas is qualitative

and extends the model discussed above for cilia. In addition to biased kinetics, we now also

incorporate spontaneous filament curvature as well as a direct feedback from curvature on

the dynein kinetics, whose detachment rate we model as

ε± = ε±0 n± exp (F±/fc ± κ/κc) , (5.32)

where κ(s, t) is the local curvature and κc is the critical value beyond which motors start

to unbind. We set a constant non-zero intrinsic curvature κ0 = φ0
s that allows the flagella

to spontaneously bend in absence of dynamic forces from the motors. With these mod-

ifications, the sliding displacement is now calculated from this reference configuration as

∆(s, t) = φ(s, t)− φ0(s) = φ(s, t)− κ0s.

A typical waveform obtained with this model is shown in Figure 5.6(c) and resembles

that of a wild-type Chlamydomonas flagellum. Parameters for this case were estimated

as follows. Chlamydomonas reinhardtii has a typical body size of 7 − 10µm with two

flagella of length 10 − 12µm [214]. The bending rigidity of the axoneme is estimated

to be B ∼ 5.8 × 10−22 N m2. With these values, our numerical experiments indicate

that waveforms of the type shown in Figure 5.6(c) are possible for Sp ∼ 2 − 3. Using a

characteristic time scale of τ0 ≈ 40 ms, we observe a beating frequency f ∼ 12 − 15 Hz,

which is lower than the typical frequency of 50− 60 Hz observed in experiments.
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for asymmetric flagellar beats similar to Chlamydomonas. Further developments of the geometric-clutch model [20]
with excitable dynein kinetics were able to reproduce breaststroke-like beating patterns. Recently, Sartori et al. [18]
analyzed the axonemes of both wild-type and mbo2 strains of Chlamydomonas. Through Fourier decomposition of
waveforms and a numerical fitting procedure, they found that sliding control provides a poor fit for the waveform.
Instead, curvature-control mechanisms provide the best fit to experimental data. Quite surprisingly, they noted that
it is the rate of change of curvature that most likely controls the dynein activity. They also reported that the flagella
have a non-zero static mode, suggesting an intrinsic curvature. However, their model neglected spacial variations of
the motor control mechanism by non-uniform dynein distributions.

Our approach to capturing the beating patterns of Chlamydomonas is qualitative and extends the model discussed
above for cilia. In addition to biased kinetics, we now also incorporate spontaneous filament curvature as well as a
direct feedback from curvature on the dynein kinetics, whose detachment rate we model as

✏± = ✏±0 n± exp (F±/fc ± /c) , (35)

where (s, t) is the local curvature and c is the critical value beyond which motors start to unbind. We set a constant
non-zero intrinsic curvature 0 = �0

s that allows the flagella to spontaneously bend in absence of dynamic forces from
the motors. With these modifications, the sliding displacement is now calculated from this reference configuration as
�(s) = �(s) � �0(s) = �(s) � 0s.

A typical waveform obtained with this model is shown in Fig. 6(c) and resembles that of a wild-type Chlamydomonas
flagellum. Parameters for this case were estimated as follows. Chlamydomonas reinhardtii has a typical body size of
7 � 10 µm with two flagella of length 10 � 12 µm [46]. The bending rigidity of the axoneme is estimated to be
B ⇠ 5.8 ⇥ 10�22 N m2. With these values, our numerical experiments indicate that waveforms of the type shown in
Fig. 6(c) are possible for Sp ⇠ 2 � 3. Using a characteristic time scale of ⌧0 ⇡ 40 ms, we observe a beating frequency
f ⇠ 12 � 15 Hz, which is lower than the typical frequency of 50 � 60 Hz observed in experiments.

IV. WAVEFORM ANALYSIS

A. Tangent angle dynamics and motor populations

We provide more quantitative details on the various waveforms of Fig. 6 by analyzing tangent angle and motor
population dynamics. Following Sartori et al. [47], we first present results on the power spectrum of the mean
tangent angle, which is defined as h�(t)is =

R L

0
�(s, t) ds. We show its power spectral density h|�̂|2is for sperm-like

and Chlamydomonas-like beats in Fig. 7, where we observe distinct peaks at the various harmonics of the fundamental
frequency f . In the case of symmetric sperm-like beats, only odd harmonics appear in the spectrum, which is a direct
consequence of the symmetry property �(s, t + T/2) = ��(s, t) where T = 1/f is the period of oscillation. The
Chlamydomonas waveform exhibits both odd and even harmonics, including a peak at zero frequency that points to
the static mode of deformation �0(s) induced by the imposed spontaneous curvature. The spectrum produced by our
model is qualitatively very similar to that measured in wild-type Chlamydomonas reinhardtii [18].

More details on the tangent angle and motor population dynamics are provided in Fig. 8, where we plot � and n±
at the filament midpoint (s = 1/2) as functions of time for the three beating patterns of Fig. 6. These quantities

Figure 5.7: Power spectral density 〈|φ̂|2〉s of the averaged tangent angle for: (a) a sperm-
like symmetric waveform and (b) Chlamydomonas-like breaststroke. Parameters are the
same as in Figure 5.6(a, c).

5.5 Waveform analysis

5.5.1 Tangent angle dynamics and motor populations

We provide more quantitative details on the various waveforms of Figure 5.6 by

analyzing tangent angle and motor population dynamics. Following Sartori et al. [173],

we first present results on the power spectrum of the mean tangent angle, which is defined

as 〈φ(t)〉s =
∫ L

0
φ(s, t) ds. We show its power spectral density 〈|φ̂|2〉s for sperm-like and

Chlamydomonas-like beats in Figure 5.7, where we observe distinct peaks at the various

harmonics of the fundamental frequency f . In the case of symmetric sperm-like beats,

only odd harmonics appear in the spectrum, which is a direct consequence of the sym-

metry property φ(s, t + T/2) = −φ(s, t) where T = 1/f is the period of oscillation. The

Chlamydomonas waveform exhibits both odd and even harmonics, including a peak at

zero frequency that points to the static mode of deformation φ0(s) induced by the im-

posed spontaneous curvature. The spectrum produced by our model is qualitatively very

similar to that measured in wild-type Chlamydomonas reinhardtii [187].

More details on the tangent angle and motor population dynamics are provided in
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FIG. 8. Tangent angle and motor population dynamics in the case of (a) sperm-like, (b) cilia-like and (c) Chlamydomonas-like
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The bottom panel shows the evolution of corresponding bound motor populations n+(s, t) and n�(s, t), also evaluated at the
midpoint. Parameters are the same as in Fig. 6.

More details on the tangent angle and motor population dynamics are provided in Fig. 8, where we plot � and n±
at the filament midpoint (s = 1/2) as functions of time for the three beating patterns of Fig. 6. These quantities
were previously reported by Oriola et al. [5] close to the initial Hopf bifurcation, where the tangent angle and bound
motor distributions were found to have similar waveforms with a constant phase di↵erence. In the nonlinear regime,
these waveforms start to di↵er as highlighted in Fig. 8. The case of sperm-like beats in Fig. 8(a) is characterized
by a symmetric waveform for �, which shares striking similarities with the experimental measurements of Riedel-
Kruse et al. [6]. The two antagonistic motor populations have identical phase-shifted evolutions, which is expected
for symmetric beats. They also show cusp-shaped oscillations that are characteristic of far-from-equilibrium dynamics
[25, 39]. Quite remarkably, we find that only a small fraction of bound dyneins is required to produce oscillations
[5]. Fig. 8(b,c) show the dynamics for ciliary and breaststroke patterns, respectively, and look qualitatively di↵erent
from the case of sperm. In particular, the tangent angle evolution shows sharps cusps, with distinct rates of growth
and decay that are indicative of the asymmetric power and recovery strokes. The cusps in the dynamics of � are
accompanied by abrupt changes in the bound dynein populations, with n+ and n� now showing distinct waveforms
as a result of biased kinetics. It is useful to recall that the kinetics of dynein motors in our model does not account
for any form of motor transport along the arc-length, and as a result sharp changes in bound motor fractions are
permissible when the local rate of attachment changes sign. It is likely that some amount of di↵usion is present in
biological systems and would somewhat smoothen motor population dynamics [48].

B. Reduced-order dynamics and limit cycles

The set of partial di↵erential equations governing the evolution of the tangent angle �(s, t) can be interpreted as an
infinite dimensional dynamical system. As previously discussed, this dynamical system undergoes a Hopf bifurcation
with increasing activity, leading to limit-cycle oscillations. In the standard analysis of Hopf bifurcations [49], limit
cycles are typically described in terms of a characteristic radius r and a phase � that grows linearly with time. This
suggests seeking a lower-dimensional approximation of the full dynamical system that coarse-grains the dynamics
into a simpler oscillator while retaining its essential features. Several studies of hydrodynamic synchronization have
proposed similar approaches [50–52]. Here, we apply tools from the Principal Component Analysis (PCA) to describe
the waveforms, as was previously done in the past to analyze flagellar beats [5, 27, 53]. We restrict our analysis to
sperm and ciliary beating patterns, as the breaststroke waveforms reveal very similar results as cilia.

A spatiotemporal representation of the beating patterns is first obtained in Fig. 9(a, d) where we plot the tangent
angle �(s, t) as a function of both s and t. These so-called ‘kymographs’ are qualitatively similar to those obtained
experimentally for both sperm and cilia, and clearly highlight the periodic nature of the dynamics, with bending waves
that propagate from base (s = 0) to tip (s = 1). To further characterize deformations, we first define the covariance

Figure 5.8: Tangent angle and motor population dynamics in the case of (a) sperm-like, (b)
cilia-like and (c) Chlamydomonas-like beating patterns. The top panel shows the evolution
of the tangent angle φ(s, t) measured at the midpoint of the filament (s = 1/2). The bottom
panel shows the evolution of corresponding bound motor populations n+(s, t) and n−(s, t),
also evaluated at the midpoint. Parameters are the same as in Figure 5.6.

Figure 5.8, where we plot φ and n± at the filament midpoint (s = 1/2) as functions of time

for the three beating patterns of Figure 5.6. These quantities were previously reported by

Oriola et al. [174] close to the initial Hopf bifurcation, where the tangent angle and bound

motor distributions were found to have similar waveforms with a constant phase difference.

In the nonlinear regime, these waveforms start to differ as highlighted in Figure 5.8. The

case of sperm-like beats in Figure 5.8(a) is characterized by a symmetric waveform for φ,

which shares striking similarities with the experimental measurements of Riedel-Kruse et

al. [175]. The two antagonistic motor populations have identical phase-shifted evolutions,

which is expected for symmetric beats. They also show cusp-shaped oscillations that are

characteristic of far-from-equilibrium dynamics [194, 208]. Remarkably, we find that only

a fairly small fraction of bound dyneins is required to produce oscillations [174]. Fig-

ure 5.8(b,c) show the dynamics for ciliary and breaststroke patterns, respectively, and look

qualitatively different from the case of sperm. In particular, the tangent angle evolution

shows sharp cusps, with distinct rates of growth and decay that are indicative of the asym-
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metric power and recovery strokes. The cusps in the dynamics of φ are accompanied by

abrupt changes in the bound dynein populations, with n+ and n− now showing distinct

waveforms as a result of biased kinetics. It is useful to recall that the kinetics of dynein

motors in our model does not account for any form of motor transport along the arc-

length, and as a result sharp changes in bound motor fractions are permissible when the

local rate of attachment changes sign. It is likely that some amount of diffusion is present

in biological systems and would somewhat smoothen motor population dynamics [215].

5.5.2 Reduced-order dynamics and limit cycles

The set of partial differential equations governing the evolution of the tangent angle

φ(s, t) can be interpreted as an infinite dimensional dynamical system. As previously

discussed, this dynamical system undergoes a Hopf bifurcation with increasing activity,

leading to limit-cycle oscillations. In the standard analysis of Hopf bifurcations [216], limit

cycles are typically described in terms of a characteristic radius r and a phase χ that grows

linearly with time. This suggests seeking a lower-dimensional approximation of the full

dynamical system that coarse-grains the dynamics into a simpler oscillator while retaining

its essential features. Several studies of hydrodynamic synchronization have proposed

similar approaches [4, 217,218]. Here, we apply tools from Principal Component Analysis

(PCA) to describe the waveforms, as was previously done in the past to analyze flagellar

beats [174,196,219]. We restrict our analysis to sperm and ciliary beating patterns, as the

breaststroke waveforms reveal very similar results as cilia.

A spatiotemporal representation of the beating patterns is first obtained in Fig-

ure 5.9(a, d) where we plot the tangent angle φ(s, t) as a function of both s and t. These

so-called ‘kymographs’ are qualitatively similar to those obtained experimentally for both

sperm and cilia, and clearly highlight the periodic nature of the dynamics, with bending
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Figure 5.9: The first row shows: (a) the kymograph, (b) the covariance function C, and
(c) the two dominant mode shapes from PCA in the case of a symmetric sperm-like beat.
The bottom row (d, e, f) shows the same for the ciliary beating pattern. Parameters are
identical to Figure 5.6(a, b).

waves that propagate from base (s = 0) to tip (s = 1). To further characterize deforma-

tions, we first define the covariance function C(s, s′) as

C(s, s′) =

∫ T

0

∫ T

0

[φ(s, t)− 〈φ(s, t)〉t] [φ(s′, t′)− 〈φ(s′, t′)〉t′ ] dt dt′, (5.33)

where 〈φ(s, t)〉t = 1
T

∫ T
0
φ(s, t)dt is the time average of the tangent angle over one period

and C(s, s′) is symmetric with respect to s and s′ by construction. It is depicted in

Figure 5.9(b, e) for both sperm and cilia waveforms. In both cases, strong correlations are

observed near the main diagonal, which are indicative of the finite bending stiffness [174,
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196]. In the case of sperm-like beats in Figure 5.9(b), negatively correlated regions appear

at a distance of s = λ/2 away from the diagonal, which is characteristic of propagating

bending waves and provides another estimate of the wavelength. The number of local

maxima in Figure 5.9(b) is accounted by the wavenumber of the traveling waves [174]. Close

to the Hopf bifurcation, the number of local maxima decreases with increasing activity;

however, as discussed previously in Figure 5.5, this behavior is not necessarily true in the

nonlinear regime where abrupt transitions in wavenumbers can occur. Interestingly, we do

not observe any negative correlations in the case of ciliary waveforms Figure 5.9(e), where

the covariance instead systematically decays away from the diagonal.

To obtain a reduced-order representation of the dynamics, we apply PCA, which

relies on the spectral decomposition of the covariance in terms of orthogonal deformation

eigenmodes ψn(s) with corresponding eigenvalues σn:

C(s, s′) =

∞∑

n=1

σnψn(s)ψn(s′). (5.34)

These modes are determined numerically by discretizing arclength into M − 1 segments

and evaluating the covariance by quadrature. This produces an M ×M symmetric posi-

tive matrix C(si, sj), which has real positive eigenvalues σ1 ≥ σ2 ≥ ... ≥ σM > 0 and real

orthogonal eigenvectors describing fundamental modes of deformation. The first few eigen-

modes are expected to capture the dominant spatial features of the waveforms, and in all

the beat patterns considered here we find that truncating Eq. (5.34) after two terms pro-

vides a good approximation with less than 4 % error [196]. Waveforms at any instant can

now be approximated as a linear combination of eigenmodes. In the spirit of dimensional

reduction [220], we propose an approximate representation in terms of the two dominant

modes:

φ(s, t) ≈ φ0(s) + β1(t)ψ1(s) + β2(t)ψ2(s), (5.35)

where φ0(s) is the mean filament shape. The two coefficients {β1, β2}, known as ‘shape
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scores’ [196], capture the temporal evolution of the fundamental modes and can be cal-

culated numerically by least-squares minimization. The two dominant PCA modes ψ1(s)

and ψ2(s) are depicted in Figure 5.9(c) and (f) for sperm and ciliary beats.
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Figure 5.10: Limit cycle representation for (a) sperm-like and (b) ciliary beating patterns.
The red curves show the deterministic limit cycles. In panel (a), the gray points show
deviations from the deterministic cycle due to biochemical noise.

Within the approximation of Eq. (5.35), the temporal dynamics of a beating fila-

ment is represented as a trajectory in the two-dimensional phase space of {β1, β2}, where

periodic waveforms are described by limit cycles. Figure 5.10(a) shows the reconstructed

limit cycle for the symmetric sperm-like beat, both in the absence and presence of bio-

chemical noise. In the absence of noise, the limit cycle has a characteristic shape with

axial symmetry, which is more regular than that previously obtained close to the bifur-

cation limit [174]. As expected, biochemical noise leads to deviations from this periodic

trajectory, with the system randomly exploring a band of possible states surrounding the

deterministic cycle, as also seen in experimental waveforms [196,219]. The deviations from

the deterministic cycle are found to be non-uniform along the cycle, suggesting that certain

filament conformations are more susceptible to noise than others. This curious feature is

also observed experimentally [219]. The limit cycle for the cilia-like waveform is shown in
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Figure 5.10(b) and is strikingly different, with an elongated asymmetric shape resulting

from the asymmetry of the beating pattern.

5.6 Flow fields and fundamental singularities

5.6.1 Instantaneous and time-averaged flow fields

We now proceed to analyze the flow fields generated by the beating filaments and

their descriptions in terms of fundamental singularities of Stokes flow. In the Stokes regime,

the velocity at any point x in the fluid is simply obtained in terms of the force distribution

along the filament. In dimensionless form, it reads

u(x, t) =
1

Sp4

∫ 1

0

G(x,x0) · fe(s0, t) ds0, (5.36)

where x0 = x(s0, t) is the Lagrangian point parametrized by arclength s0 along the fila-

ment, fe(s0, t) is the local force per unit length exerted by the filament on the fluid, and

G(x,x0) is the appropriate Green’s function scaled by 1/(8πνL). In free space, G is simply

given by the Oseen tensor. We also consider the case of a filament clamped against a flat

wall, for which we use Blake’s solution [221] for a point force next to a no-slip boundary.

Note that the description of the disturbance flow field in terms of point forces in Eq. (5.36)

becomes inaccurate very close to the filaments, where it can be improved using a distribu-

tion of source doublets [81] that scale as ε2/r3, where r is distance from the filament and

ε is the aspect ratio. This correction, however, only modifies the flow in the close vicinity

of the filaments and does not alter the large-scale features of the disturbance fields.
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FIG. 11. Magnitude and streamlines of the instantaneous velocity field obtained using Eq. (39) for three representative cases:
(a) sperm-like beating pattern in free space, (b) ciliary beat in free space, and (c) ciliary beat against a no-slip wall at y = 0.
The three columns correspond to three time instants during one period of oscillation.

The case of a cilium next to a no-slip wall is shown in Fig. 11(c) and exhibits a qualitatively di↵erent flow field, with
the appearance of recirculation regions for certain conformations [56]. In this case, the Stokeslet contribution induced
by the filament is canceled by the presence of the wall, resulting a net flow that is either dipolar or quadrupolar,
depending on the orientation of the applied force [55]: for a point force oriented parallel to the wall, the flow field is
dipolar with a characteristic 1/r2 decay, while it is quadrupolar for a point force oriented perpendicular to the wall
with a far-field decay of 1/r3.

These observations are substantiated in Fig. 12, showing the time-averaged velocity fields for the same beating
patterns, as well as the spatial decay of the velocity magnitude. Both cases in free space resemble Stokeslet flows and

Figure 5.11: Magnitude and streamlines of the instantaneous velocity field obtained using
Eq. (5.36) for three representative cases: (a) sperm-like beating pattern in free space, (b)
ciliary beat in free space, and (c) ciliary beat against a no-slip wall at y = 0. The three
columns correspond to three time instants during one period of oscillation.
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Snapshots of instantaneous flows fields at three instants over the course of one

beating period are shown in Figure 5.11, where we consider both sperm and ciliary beats in

free space, as well as a cilium next to a no-slip wall. As expected, velocities are largest close

to the filament, with maximum values attained near the inflection points of the waveform

in the case of sperm, and near the tip of the filament in the case of cilia. In free space,

the flow field away from the filament resembles the well-known Stokeslet flow field, which

decays as 1/r in three dimensions. This does not come as a surprise as the filaments are not

force-free in our model: in an experiment on spermatozoa, the net force imparted by the

flagellum would instead balance the drag on the sperm head, resulting a net dipolar flow

decaying as 1/r2. The case of a cilium next to a no-slip wall is shown in Figure 5.11(c) and

exhibits a qualitatively different flow field, with the appearance of recirculation regions

for certain conformations [222]. In this case, the Stokeslet contribution induced by the

filament is canceled by the presence of the wall, resulting in a net flow that is either

dipolar or quadrupolar, depending on the orientation of the applied force [221]: for a point

force oriented parallel to the wall, the flow field is dipolar with a characteristic 1/r2 decay,

while it is quadrupolar for a point force oriented perpendicular to the wall with a far-field

decay of 1/r3.

These observations are reported in Figure 5.12, showing the time-averaged velocity

fields for the same beating patterns, as well as the spatial decay of the velocity magnitude.

Both cases in free space resemble Stokeslet flows and indeed exhibit a far-field decay of

1/r. In the case of the ciliary beat above a no-slip boundary, the flow has a more complex

structure with a recirculation bubble next to the wall, and also shows a much slower decay

of 1/r3, which suggests that on average the net force exerted by the filament is normal to

the wall [4].
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FIG. 12. (a) Streamlines and magnitude of the time-averaged velocity field huit for the three cases shown in Fig. 11. From
left to right: sperm in free space, cilium in free space, and cilium against a no-slip wall. (b) Log-log plot of the time-averaged
velocity magnitude vs distance. The colors are associated with the lines along which the velocity are evaluated as shown in
panel (a). In free space, the velocity fields show a decay of 1/r characteristic of a net Stokeslet. In the case of a cilium next to
a wall, a faster decay of 1/r3 is found, which corresponds to a point force perpendicular to no-slip wall.

indeed exhibit a far-field decay of 1/r. In the case of the ciliary beat above a no-slip boundary, the flow has a more
complex structure with a recirculation bubble next to the wall, and also shows a much slower decay of 1/r3, which
suggests that on average the net force exerted by the filament is normal to the wall [50].

Another interesting aspect revealed by the average flow fields is the net direction of pumping. In the case of a
clamped sperm with anterograde wave propagation as shown in Fig. 12(a), flagellar oscillations drive a net flow from
tip to tail, which, in the case of a force-free cell, would enable propulsion in the forward direction. However, simulations
at lower activity levels (not shown) reveal that the direction of propulsion is reversed when waves propagate in the
retrograde direction. This hints at the importance of dynein level regulation for e�cient sperm motility, and also has
consequences for the hydrodynamic synchronization of nearby interacting flagella [57].

B. Singularity representation

The linearity of the Stokes equations allows us to represent the flow fields in terms of fundamental singular solutions.
Several methods have been proposed for seeking such representations. In a simple model, Brumley et al. [52] used a
single time-dependent Stokeslet to approximate the flow field of a Volvox carteri colony held in place by a micropipette.
A more general method consists of seeking an unsteady multipole expansion [58], which was applied to describe the
flow field generated by swimming Chlamydomonas [59]. More recently, PCA was also used to identify dominant
contributions to the velocity fields. These modes were then approximated by a set of regularized Stokeslets [56] for
quantitative representations of the flow fields [60, 61]. Here, we adopt this approach and apply it to analyze the flow
field generated by a clamped sperm.

The numerical determination of the PCA modes involves similar steps as discussed in Sec. IV B for the analysis of
waveforms and proceeds as follows. We focus on two-dimensional flow fields in the plane of motion, and first compute
q snapshots of the velocity field on a N ⇥ N Cartesian grid over the course of one period of oscillation. In contrast

Figure 5.12: (a) Streamlines and magnitude of the time-averaged velocity field 〈u〉t for
the three cases shown in Figure 5.11. From left to right: sperm in free space, cilium in
free space, and cilium against a no-slip wall. (b) Log-log plot of the time-averaged velocity
magnitude vs distance. The colors are associated with the lines along which the velocity
are evaluated as shown in panel (a). In free space, the velocity fields show a decay of 1/r
characteristic of a net Stokeslet. In the case of a cilium next to a wall, a faster decay of
1/r3 is found, which corresponds to a net force perpendicular to the no-slip wall.

Another interesting aspect revealed by the average flow fields is the net direction of

pumping. In the case of a clamped sperm with anterograde wave propagation as shown in

Figure 5.12(a), flagellar oscillations drive a net flow from tip to tail, which, in the case of a

force-free cell, would enable propulsion in the forward direction. However, simulations at

lower activity levels (not shown) reveal that the direction of propulsion is reversed when

waves propagate in the retrograde direction. This hints at the importance of dynein level

regulation for efficient sperm motility, and also has consequences for the hydrodynamic
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FIG. 13. First three PCA velocity modes V(i)(x) (i = 1, 2, 3) for a clamped beating sperm. The first mode is dominated by a
Stokeslet flow, whereas the next two modes have a more complex spatial structure with multiple velocity peaks that echo the
structure of the deformation eigenmodes found in Fig. 9(c). All three velocity fields can be approximated in terms of regularized
Stokeslets.

to past studies [60], we do not subtract the time-averaged velocity field as usually done in PCA; this does not a↵ect
the representation of the flow field due to the linearity of Stokes flow. Each such snapshot contains 2N2 values for
the two velocity components (ux, uy), which are used to populate the rows of a matrix M 2 Rm⇥2N2

:

v↵ = row↵M =
⇥
u1

x, u2
x, · · · uN2

x , u1
y, u2

y, · · · uN2

y

⇤
↵
, for ↵ = 1, 2, ..., q. (40)

We then define the 2N2 ⇥ 2N2 covariance matrix C = MT M , which encapsulates spatial features of the velocity
field irrespective of time. The matrix C is real symmetric positive definite and thus admits an eigendecomposition in
terms of real orthogonal basis vectors V(i)(x) 2 R2N2

, where, i = 1, ..., 2N2. For all the beating patterns presented
here, we find that the first 3 to 5 eigenmodes are su�cient to capture 95 % of the cumulative variations in the data.
In the case of sperm, an excellent representation of the velocity field can be achieved as a linear combination of the
three dominant modes:

ud(x, t) = ↵1(t)V
(1)(x) + ↵2(t)V

(2)(x) + ↵3(t)V
(3)(x), (41)

where the time-dependent coe�cients are determined by least-squares minimization. The first three PCA modes
V(i)(x) are illustrated in Fig. 13, and the corresponding amplitudes ↵i(t) are show in Fig. 14(a). The dominant mode
(i = 1), which is almost steady, resembles the flow due to a Stokeslet and captures the net streaming motion induced
by the filament. The next two modes (i = 2, 3) have a more complex spatial structure with multiple velocity peaks
that echo the structure of the deformation eigenmodes found in Fig. 9(c). These two modes are oscillatory with a
constant phase di↵erence and account for unsteady flow dynamics resulting from filament deformations.

These various PCA modes can be further approximated in terms of collections of regularized Stokeslets [56, 62].
The flow field generated by a single regularized Stokeslet with regularization parameter ✏ and strength f is given by

uS(x; ✏) =

"�
r2 + 2✏2

�
I + rr

(r2 + ✏2)
3/2

#
· f , (42)

where r = x � x0 and x0 is the location of the singularity. Following Ishimoto et al. [60], we represent each mode
in terms of p Stokeslets, where the parameters (✏p, xp

0, y
p
0 , fp

x , fp
y ) are calculated through a least-squares solution

that implements a Levenberg-Marquardt algorithm. The number p is chosen such that we obtain a satisfactory
approximation to the basis vectors, and in the present case we use p = 2, 5 and 6 for each for the first three modes. A
typical flow field obtained by this reconstruction method is compared to the full numerical flow field in Fig. 14(b, c),
where excellent agreement is found.

VI. CONCLUSION

In this paper, we have used numerical simulations of a sliding control model of the axoneme to highlight how
spontaneous oscillations can emerge from the collective action of molecular motors. Our model for coupled elasto-
hydrodynamics and motor kinetics follows that previously proposed by Oriola et al. [5] and allows for saturation of

Figure 5.13: First three PCA velocity modes V (i)(x) (i = 1, 2, 3) for a clamped beating
sperm. The first mode is dominated by a Stokeslet flow, whereas the next two modes have
a more complex spatial structure with multiple velocity peaks that echo the structure of the
deformation eigenmodes found in Figure 5.9(c). All three velocity fields can be approximated
in terms of regularized Stokeslets.

synchronization of nearby interacting flagella [223].

5.6.2 Singularity representation

The linearity of the Stokes equations allows us to represent the flow fields in terms

of fundamental singular solutions. Several methods have been proposed for seeking such

representations. In a simple model, Brumley et al. [218] used a single time-dependent

Stokeslet to approximate the flow field of a Volvox carteri colony held in place by a

micropipette. A more general method consists of seeking an unsteady multipole expansion

[224], which was applied to describe the flow field generated by swimming Chlamydomonas

[225]. More recently, PCA was also used to identify dominant contributions to the velocity

fields. These modes were then approximated by a set of regularized Stokeslets [222] for

quantitative representations of the flow fields [226,227]. Here, we adopt this approach and

apply it to analyze the flow field generated by a clamped sperm.
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The numerical determination of the PCA modes involves similar steps as discussed

in Sec. 5.5.2 for the analysis of waveforms and proceeds as follows. We focus on two-

dimensional flow fields in the plane of motion, and first compute q snapshots of the velocity

field on a N ×N Cartesian grid over the course of one period of oscillation. In contrast to

past studies [226], we do not subtract the time-averaged velocity field as usually done in

PCA; this does not affect the representation of the flow field due to the linearity of Stokes

flow. Each such snapshot contains 2N2 values for the two velocity components (ux, uy),

which are used to populate the rows of a matrix M ∈ Rq×2N2
:

vα = rowαM =
[
u1
x, u

2
x, · · ·uN

2

x , u1
y, u

2
y, · · ·uN

2

y

]
α
, for α = 1, 2, ..., q. (5.37)

We then define the 2N2 × 2N2 covariance matrix C = MTM , which encapsulates spatial

features of the velocity field irrespective of time. The matrix C is real symmetric positive

definite and thus has an eigendecomposition in terms of real orthogonal basis vectors

V (i)(x) ∈ R2N2
, where, i = 1, ..., 2N2. For all the beating patterns presented here, we find

that the first 3 to 5 eigenmodes are sufficient to capture 95 % of the cumulative variations

in the data. In the case of sperm, an excellent representation of the velocity field can be

achieved as a linear combination of the three dominant modes:

ud(x, t) = α1(t)V (1)(x) + α2(t)V (2)(x) + α3(t)V (3)(x), (5.38)

where the time-dependent coefficients are determined by least-squares minimization. The

first three PCA modes V (i)(x) are illustrated in Figure 5.13, and the corresponding ampli-

tudes αi(t) are show in Figure 5.14(a). The dominant mode (i = 1), which is almost steady,

resembles the flow due to a Stokeslet and captures the net streaming motion induced by

the filament. The next two modes (i = 2, 3) have a more complex spatial structure with

multiple velocity peaks that echo the structure of the deformation eigenmodes found in

Figure 5.9(c). These two modes are oscillatory with a constant phase difference and ac-

count for unsteady flow dynamics resulting from filament deformations.
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FIG. 14. (a) Variation of weighting coe�cients of the three modes over one time period. (b) Comparison of the approximated
instantaneous flow-field to the exact (numerical) one at, t/T = 0.9.

unstable modes following a Hopf bifurcation that leads to the propagation of bending waves resembling the beating
patterns of spermatozoa. While the study of Oriola et al. [5] as well as other related numerical models [6, 23, 39]
were restricted to the small curvature limit where retrograde wave propagation takes place, our fully nonlinear sim-
ulations demonstrated the existence of a second transition at higher activity levels giving rise to anterograde wave
propagation consistent with observations of sperm [36]. Unlike previous studies that used local resistive force theory
to capture viscous stresses, our model also accounts for non-local hydrodynamic interactions based on slender-body
theory, and these interactions are found to change the instability threshold quantitatively even though the qualitative
behavior remains unchanged. We also demonstrated the ability of our model to capture asymmetric beating patterns
resembling those of cilia and of Chlamydomonas flagella, which were obtained using a combination of biased motor
kinetics and curvature control. While quantitative comparison of the obtained waveforms with experimental data
[18] remains a challenge, the qualitative agreement is promising. Tools from principle component analysis were also
applied for dimensional reduction and allowed us to describe the beating patterns in terms of simplified limit-cycle
dynamics reminiscent of a canonical Hopf oscillator. We also explored the role of biochemical noise, which causes
deviations from these limit cycles in qualitative agreement with experimental measurements [27].

Our model also allowed us to analyze disturbance flows induced by beating filaments, which are known in biological
systems to play a crucial role in development, motility and sensing. It has been a long-standing hypothesis that these
flow fields may be responsible for flagellar synchronization. The phase synchronization of nearby swimming sperm
and the synchronous beating of bi-flagellated Chlamydomonas algae have indeed been observed experimentally [63],
and the cilia lining the surface of squirming cells such as Paramecium are also well known to exhibit coordinated
beats in the form of metachronal waves. A number of theoretical and computational models [14, 39, 40, 42, 64, 65]
have been applied to elucidate mechanisms for synchronization and metachronal wave formation, yet most of them
either rely on an internal driving engine to generate beats or completely coarse-grain motor activity. While these
approaches provide interesting insight, they miss crucial aspects of internal axonemal mechanics and their coupling
to motor kinetics. The mathematical model and numerical tools developed here provide a foundation for addressing
these questions in a more realistic framework, where we can also account for the role of biochemical noise in driving
the ‘phase slips’ observed in biological systems [63].

There remains a number of avenues in which the presented model could be improved or extended. We have entirely
focused on clamped boundary conditions, while it may be also interesting to consider pivoting boundary conditions and
include provisions for basal sliding. Since our model is based on a two-dimensional projection of the three-dimensional
axoneme, emergent beating patterns are planar only. Including a more realistic representation of the 3D axonemal
structure is challenging but would allow for twist, which is known to lead to di↵erent beating patterns [47]. Recently,
Pearce et al. [48] proposed a formulation with curvature-sensitive kinesin binding dynamics to explain ring formations
in gliding microtubule assays. Their model also shows potential for ciliary beating patterns and can be included in

Figure 5.14: (a) Variation of the weighting coefficients αi(t) of the three PCA velocity
modes shown in Figure 5.13 over one period of oscillation. (b) Comparison of the approxi-
mated instantaneous flow-field (right) to the exact numerical one (left) at t/T = 0.9.

These various PCA modes can be further approximated in terms of collections of

regularized Stokeslets [71, 222]. The flow field generated by a single regularized Stokeslet

with regularization parameter ε and strength f is given by

uS(x; ε) =

[(
r2 + 2ε2

)
I + rr

(r2 + ε2)3/2

]
· f , (5.39)

where r = x−x0 and x0 is the location of the singularity. Following Ishimoto et al. [226],

we represent each mode in terms of p Stokeslets, where the parameters (εp, xp0, y
p
0, f

p
x , f

p
y )

are calculated through a least-squares solution that implements a Levenberg-Marquardt

algorithm. The number p is chosen such that we obtain a satisfactory approximation to

the basis vectors, and in the present case we use p = 2, 5 and 6 for each for the first three

modes. A typical flow field obtained by this reconstruction method is compared to the full

numerical flow field in Figure 5.14(b, c), where excellent agreement is found.
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5.7 Conclusion

In this chapter, we have used numerical simulations of a sliding control model of the

axoneme to highlight how spontaneous oscillations can emerge from the collective action of

molecular motors. Our model for coupled elastohydrodynamics and motor kinetics follows

that previously proposed by Oriola et al. [174] and allows for saturation of unstable modes

following a Hopf bifurcation that leads to the propagation of bending waves resembling

the beating patterns of spermatozoa. While the study of Oriola et al. [174] as well as other

related numerical models [175,192,208] were restricted to the small curvature limit where

retrograde wave propagation takes place, our fully nonlinear simulations demonstrated

the existence of a second transition at higher activity levels giving rise to anterograde

wave propagation consistent with observations of sperm [205]. We also demonstrated the

ability of our model to capture asymmetric beating patterns resembling those of cilia and

of Chlamydomonas flagella, which were obtained using a combination of biased motor

kinetics and curvature control. Our model also allowed us to analyze disturbance flows

induced by beating filaments, which are known in biological systems to play a crucial role

in development, motility and sensing. We build on the hydrodynamics and will consider

the problem related to hydrodynamic interaction and possible synchronization in pairs of

filaments in the next chapter.

This chapter is primarily based on the material published in Physical Review Fluids

(2019) authored by Brato Chakrabarti and David Saintillan [9].The dissertation author was

the primary researcher and author of this paper.
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Chapter 6

Elastohydrodynamic synchronization

in pair filaments

6.1 Fundamentals of sync

In the most classical sense synchronization (from the Greek σv̀ν: syn = the same,

and χρòνpζ : chronos = time) means adjustment of rhythms or periods of self-sustained

periodic oscillators due to their (weak) interaction. The history of synchronization goes

back to the 17th century when the famous Dutch scientist Christiaan Huygens reported on

his observation of synchronization of two pendulum clocks which he had invented shortly

before [228]. Another important observation of synchrony of organ pipes was described by

Lord Rayleigh in his ‘Theory of Sound’. There are many more examples of synchrony in

man-made devices ranging from lasers, and electric power systems to electronic generators.

Over the last few decades the emphasis of research has shifted towards synchronization in

biological systems. Examples include synchronous division of cells [229], synchronous firing

of neurons [230], co-operative behavior among fireflies [231], animals and even humans

[232].

157



The fundamental idea of phase synchronization, which will be the main focus of this

chapter, hinges on interpreting self-sustained oscillators as stable limit cycles. Associated

with a limit cycle one can define a unique phase ψ(t) that grows linearly with time and

remains neutrally stable. Due to the neutral stability of the phase, a small perturbation

(e.g. external periodic forcing or coupling to another system) can cause relatively large

deviations of the phase - contrary to the amplitude, which is only slightly perturbed due

to the transversal stability of the limit cycle. Thus, with a weak coupling one can adjust

the phase and the frequency of oscillations without significantly influencing the amplitude.

This adjustment is the key to synchronization phenomenon [228]. Typically adjustments of

oscillators to synchronize can be described in terms of phase locking, frequency entrainment

and have also been generalized to chaotic systems [233]. Synchronization phenomena

in large collection of oscillators often manifest themselves as collective coherent regimes

appearing via non-equilibrium phase transitions [234], and can sometimes be responsible

for catastrophic scenarios like the lateral swaying of the Millennium Bridge in London [235].

In this chapter we probe one of the long-standing and well studied problem of biological

oscillators: the role of hydrodynamics in synchronization.

6.2 Synchronization in cilia and flagella

Studies on synchronization of cilia and flagella date back to observations by Roth-

schild [236] on nearby swimming sperm and subsequent theoretical work by Taylor [237],

who proved that dissipation for two swimming sheets is minimized for an in-phase con-

figuration. While biology is often not driven by dissipation principles, it has long been

hypothesized that fluid-mediated hydrodynamic interactions play a central role in syn-

chronization and in collective behaviors such as metachronal waves in large ciliary ar-

rays [238]. Over the last two decades, experiments [218, 239–243] using micropipette-held
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Chlamydomonas have revealed that elastohydrodynamic interactions may indeed be at

play in causing its two flagella to synchronize their breaststrokes. Periods of asynchrony

are thought to arise due to biochemical noise and are well described by a stochastic Adler

equation [218,233]. Understanding collective behaviors and synchronization holds the key

to important biological questions such as evolution and origin of multi-celluliraty.

Theoretical progress in understanding synchronization is complicated by the intri-

cate internal structure and actuation of the flagellum core: the axoneme, whose structure

was discussed in detail in the previous chapter. Much work has gone into developing mini-

mal models that neglect this biological complexity and coarse-grain flagella as microspheres

driven on compliant or tilted orbits [4,217,244,245]. Introduction of elasticity in the clas-

sical Taylor swimming sheet model also suggests that how flexibility can spontaneously

induce phase locked conformation [246]. More detailed numerical models have relied on

pre-imposed internal or external actuations to analyze metachronal waves [209, 210] or

the bistability of elastic filaments [247], yet these descriptions capture experimental wave-

forms poorly. Only recently have there been attempts to study the role of hydrodynamics

in simplified models of active elastic filaments [183,248].

The detailed process leading to spontaneous flagellar oscillations still remains un-

clear. However our microscopic model outlined in the previous chapter provides a good

starting point since we have incorporated a basic structure of the planar axoneme and

accounted for stochastic dynamics of molecular motors. Since all the oscillations described

in the previous chapter emerges spontaneously it becomes a natural choice to study hy-

drodynamic synchronization. In this chapter, we analyze the temporal dynamics and

synchronization of a pair of such spontaneously beating filaments. Our results are consis-

tent with recent experiments [218], and we will elucidate the crucial roles of hydrodynamic

interactions, mechanochemical feedback, and biochemical noise in the process of synchro-
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nization.

6.3 Comments on waveforms

In the previous chapter we have provided the detailed characterization of various

waveforms that are possible from our model. The major results were summarized in

the phase chart provided in Figure 5.4. Before proceeding to study interaction between

filaments we want to highlight a few more quantitative and qualitative features of the

waveforms that make our model most suitable to tackle this problem.

6.3.1 Symmetric sperm like beating

In order to compare the anterograde regime of nonlinear, finite amplitude wave-

propagation to experimental waveforms as shown previously in Figure 5.4, we report tan-

gent angle dynamics and simulated snapshots of traveling waves in Figure. 6.1. We find

that by tuning the two primary control parameters namely the Sperm number Sp and the

activity number µa we find a variety of anterograde waveforms with different wavenumber,

amplitude and frequency.
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Figure 6.1: Sperm like waveforms for various combinations of (Sp, µa) and the correspond-
ing evolution of the tangent angle at the mid point. Simulations are for µ = 100, ζ = 0.3
and η = 0.14.

The above waveforms compare extremely well with the experimental snapshots of

various marine spermatozoa reported in [249] in different viscous media. In particular

we are able to capture a range of wavenumber along the filament, consistent with exper-

imental observations. Amplitude, frequency and the wavelengths depend non-trivially on

the control parameters and have been explored in detail in [250]. The evolution of the

tangent angle dynamics also compares quantitatively with the measurements in [175] for

bull sperm.

6.3.2 Waveforms of Chlamydomonas

We have previously pointed out that the frequency of beating predicted by our

model in the case of Chlamydomonas-like beats is off compared to experimental values.

Nonetheless, the qualitative features of the beats are consistent with observations. In the

previous chapter we discussed the main properties of the power spectrum of the mean angle.

Here we characterize the waveform using a Fourier decomposition. Following [187,251] we
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seek a representation of the tangent angle as follows:

φ(s, t) =

∞∑

n=−∞
ψn(s) exp(inωt), (6.1)

where ω is the angular frequency. In fig. 6.2, we show the static mode ψ0(s) and the first

dynamic mode ψ1(s) and associated phase. In [187], this analysis was performed on a free

axoneme, which is different from the clamped flagellum considered in our simulation. Our

results, however, compare favorably with the images analyzed in [251] (for example, figure

4.12 of the thesis) for a flagellum attached to the cell body of Chlamydomonas. While

there exist quantitative differences, our model is found to capture all the essential features

of the beating pattern.
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Figure 6.2: (a): Zeroth mode ψ0 of the beating pattern showing the static curvature. (b)
Real and imaginary parts of the first dynamic mode ψ1. Since the flagellum is clamped,
we have ψ1(0) = 0 which is different from the free axoneme considered in Ref. [187]. (c)
Amplitude of the first dynamic mode. (d) Argument of ψ1, indicating the phase of the
mode.
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6.3.3 Ciliary beating patterns

In biology a wide variety of ciliary beating patterns are possible. Most of the wave-

forms are fully three dimensional [252]. Our present model and the associated formulation

is restricted to planar beating patterns. However cilia in a few biological organisms like

Opalina [253], Ctenophore [254], and mollusc [254] are known to have almost planar beating

pattern for which our model can be relevant. Interestingly defective respiratory cilia beats

entirely in a plane [255] with a waveform similar to that shown in the main text. Figure. 6.3

show a couple of waveforms that can be obtained with our model using various geometric

feedback mechanisms.
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Figure 6.3: Possible ciliary beating patterns under pure sliding (left) and a combination
of sliding and curvature (right) control.

In the following sections we will attempt to qualitatively capture the synchroniza-

tion behavior observed in experiments with micropipette-held somatic cells Volvox car-

teri [218]. The flagella in these cells beat almost entirely in a plane [256]. We will find a

posteriori that in order to reproduce the synchronization behavior, it is the asymmetry of

the beating pattern that becomes crucial and not the non-planarity.

164



6.4 Review of the governing equations

We have outlined the governing equations for single filament oscillations in the

previous chapter. The equations of motion for pair filaments are identical to equations

(5.25)-(5.27). However the expression for the disturbance flow field is now altered in the

presence of another filament. Given two filaments indexed by {α, β}, the flow is obtained

as

ud(sα) = K[fαe ](sα) +

∫ 1

0

G(sα; sβ) · fβe (sβ) dsβ, (6.2)

where fe is the elastic force density. The first term in Eq. (6.2) is the finite-part integral of

slender body theory [81, 250] and captures hydrodynamic interactions within a filament.

The second term accounts for the flow induced by the other filament, where the Green’s

function G(sα; sβ) is taken to be either the Oseen tensor in free space or Blake’s tensor [221]

in presence of a no-slip wall. The kinetics of the molecular motors obey (5.28) and the

parameter Λ characterizes the strength of the biochemical noise.

6.5 Synchronization in sperm waveforms

We first focus on the synchronization of pairs of sperm placed side by side as shown

in Figure 6.4. We initialize the simulation in the absence of inter-filament hydrodynamic

interactions (HI) by letting spontaneous oscillations reach steady state after saturation of

dynein kinetics. The initial configuration is chosen such that the filaments are almost in

antiphase (AP). We then switch on HI and, after several periods, the sperms go in-phase

(IP) and remain phase-locked thereafter.
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Figure 6.4: In-phase synchronization of anterograde sperm waveforms. The red arrow indi-
cates the direction of wave propagation. On left we show the initial anti-phase conformation
and on right we highlight the emerging in-phase waveform.

The key role of hydrodynamics in this process is best illustrated by Figure 6.5,

showing the evolution of the bound motor populations n+ at s = 1/4 on both filaments

(the behavior is identical for n− and at other locations). Before HI are switched on, motor

populations are uncoupled and undergo periodic oscillations in antiphase with cusp-shaped

waveforms typical of motors far from equilibrium [257] and only a small fraction of bound

motors at any given time. Once HI start acting, both the phase and amplitude of the

motor populations change. This is attributed to elastic deformations of the filaments in

their induced flow fields, which feed back to the kinetics through the change in sliding

displacement and velocity. As seen in Figure 6.5, the two motor populations rapidly go in

phase with a marginally increased amplitude, resulting in spontaneous IP synchronization

of the beating patterns. The cartoon in Figure 6.5 highlights this cyclic process funda-

mental to elastohydrodynamic synchronization, by which HI affect beating patterns via

geometry dependent motor kinetics. This feedback is most dramatic when the filaments

are closeby and sufficiently flexible.
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Figure 6.5: Evolution of dynein motor populations at s = 1/4 on two nearby sperms as a
result of HI. The dashed line indicates the instant when interactions are turned on. Time
is scaled by the oscillation period T of an isolated filament. Cartoon on the right illustrates
the feedback loop leading to synchronization.

6.6 Synchronization in ciliary beating

A similar mechanism is at play for asymmetric ciliary beats in Figure 6.6(a, b).

When the power strokes of the two cilia indicated by red arrows point in the same direction,

an IP beat emerges with net unidirectional pumping of the fluid. When the power strokes

are in opposite directions, our model leads to AP synchronization with beating patterns

resembling a ‘freestyle’ swimming gait as shown in Figure 6.6(b).

Similar AP patterns are obtained for Chlamydomonas beats, supporting the hy-

pothesis [258] that the IP breaststrokes seen in wildtype cells result from elastic basal

couplings between the two flagellar axonemes rather than from HI alone. Indeed, exper-

iments with vfl mutants that are deficient in these filamentary connections [258] or with

Volvox cells held in separate micropipettes [218] have shown AP synchronization for power

strokes with opposite orientations, consistent with our model findings.

Note that in the case of swimming or even weakly clamped cells flagellar synchro-
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nization can also happen through a rocking motion of the cell body independent of HI

or in absence of basal coupling [259–263]. The relative importance of these mechanisms

remains to be explored for the various asymmetric waveforms [263] arising in our model.
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Figure 6.6: cilia can achieve both IP (a) or AP (b) synchronization depending on the ori-
entation of the power stroke indicated by red arrows. Synchronization for Chlamydomonas
(not shown) is identical to that of cilia.

6.7 Adler equation and minimal models

For a more quantitative analysis of synchronization, we introduce a definition of the

phase ψ of a waveform. To this end, we perform the Hilbert transform of the continuous

periodic time series β(t) = φ(1/2, t), providing the analytic continuation ζ(t) = β(t) + iβ̂(t)

where

β̂(t) :=
1

π

∫ ∞

−∞

β(τ)

t− τ dτ . (6.3)

The phase of the waveform is then calculcated as ψ(t) = arctan[β̂(t)/β(t)], and we use an

appropriate geometric gauge to define a true phase that grows linearly with time [264].

The phase difference δ(t) = ψ1 − ψ2 for two nearby sperms going from AP to IP is shown
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in Figure 6.7(a) and decays to zero over the course of several periods.
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Figure 6.7: (a) Evolution of the phase difference δ(t) during synchronization of two nearby
sperms and comparison to the Adler equation (6.4). (b) Coupling strength |ε| as a function
of interflagellar distance d for various beating patterns.

In spite of the complexity of the governing equations in presence of HI, the phase

difference is well described by a simple low-dimensional Adler equation as in past experi-

ments with Chlamydomonas [241]. Here, we seek a two-parameter equation of the form

δ̇ = ε sin δ + α sin 2δ, (6.4)

where constants ε, α are estimated numerically. A solution to this equation follows the

numerical data very well in Figure 6.7(a). In all our computations, we find that |ε| �

|α| and thus define |ε| as the effective coupling strength. When plotted as a function of

interflagellar distance d in Figure 6.7(b), |ε| decays algebraically as 1/d in the far field

due to dominant Stokeslet HI, with a slower decay at short separations where complex

near-field interactions take place. Stronger coupling arises for symmetric spermlike beats

than for ciliary beats, primarily due to the longer lengths of sperm flagella. For cilia, we

also find that |ε|IP > |ε|AP in agreement with experiments [218], which can be attributed
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to the fact that filaments spend more time close to one another during IP beats and thus

interact more strongly.

It is important to point out that we have not systematically reduced the infinite

dimensional PDE’s to a one dimensional dynamical system. This is a problem in its own

right and has only been partially resolved recently in a simpler model of spontaneous

oscillations [265]. However it is still instructive to consider how one may coarse-grain such

a system to an Adler model. To this end we start with the classical rotor model [4] where

we represent the flagellar oscillator as a micro-sphere driven on a compliant circular orbit

as shown in Figure 6.8.

Figure 6.8: Schematic of coarse-grained minimal model where the beating filaments are
represented as rotors on circular orbits [4].

The radius of this orbit R ∼ L is comparable to the length of flagella or cilia. The

radial stiffness of the orbit is given by κ ∼ B/L3 and serves as a measure of elasticity.

The bead is driven on the orbit by a force that is tangent to the circular path. In the

classical [4] model the force is constant. However in a flagella or cilia the flow-field is time

dependent and it is more appropriate to use a phase dependent force profile. One such

approximation is given by:

F (ψ) =

∫ L

0

|fvis(s, ψ)| ds. (6.5)
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This effective force that scales as B/L2 and can be interpreted as the leading order Stokeslet

approximation to the instantaneous flow-field. It has also been measured in experiments

[218]. We can chose the radius a of the micro-spheres to obtain the right frequency or

average angular velocity of rotation that match our simulations. The phase dependent

force profile for sperm-like and ciliary beating is shown in Figure 6.9. The two distinctive

peaks in the ciliary beating pattern is indicative of the power and recovery strokes.
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Figure 6.9: Phase dependent force profile used to drive the micro-spheres.

In order to find the evolution of the micro-sphere we balance forces in both the

tangential and radial direction and account for the disturbance velocity fields due to hy-

drodynamic interactions. For one sphere we have:

ψ̇1 =
F (ψ)

6πνa
+

1

R1
êψ1 · [G12(x1,x2) · F (ψ2)êψ2 ] , (6.6)

Ṙ1 = − κ

6πνa
(R1 −R) + êR1 · [G12(x1,x2) · F (ψ2)êψ2 ] , (6.7)

where êR and êψ are unit vectors in the radial and tangential direction respectively and ν

is simply the viscosity of the fluid. The equation of motion for the other sphere is simply

obtained by changing the indices: 1→ 2. It is straight forward to integrate the system of

ODEs numerically. We summarize the observed results below.

• When the beads are rotating in the same direction we observe in-phase synchrony
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for both sperm and ciliary beating pattern. This corresponds to the case when the

power strokes of the filaments are in the same direction and is consistent with our

full nonlinear simulations.

• For counter rotating beads with F1 = −F2 we do not observe either in-phase or

anti-phase synchronization for ciliary beating pattern. Instead the system is phase

locked into a constant phase-difference mode. This is corresponds to filaments with

opposite power strokes and is in disagreement with our nonlinear simulations that

predict an anti-phase behavior.

The above observations point to the limitation of such coarse-grained descriptions. Indeed

as pointed in [244,245] one can possibly observe both IP and AP configurations depending

on the exact force-profiles and the stiffness of the orbit. While the minimal description is

attractive due to its simplicity, the conclusion for an actual system can often be misleading

and is probably more appropriate for describing synthetic systems [245]. However if we

drive the beads by a constant force instead of a phase dependent one, we do recover the

right behavior. In this simple case it can be shown that the evolution of the phase difference

between the oscillators obey an Adler equation given by:

d

dt
(ψ1 − ψ2) = δ̇ = −ε sin δ, (6.8)

where ε ∼ aω2νL3/Bd, where ω is the angular frequency of rotation. We can relate the

rotation rate ω to the driving force simply as ω = F/Rζ. This allows us to determine the

scaling of the coupling constant in terms of the physical parameters of the problem:

ε ∼ aρ2f2
0L

νBd
. (6.9)

Indeed the above relation makes the 1/d scaling recovered in Figure 6.7 apparent. The

above expression was used in several experiments [240, 241] to calculate the coupling be-
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tween Chlamydomonas flagella that also obeyed the Adler equation for phase synchroniza-

tion.

6.8 Biochemical noise: phase slips

Intrinsic to the kinetics of molecular motors is biochemical noise, which alters the

precise notion of synchronization. To probe its effects, we study the long-time statistics

of the phase difference in presence of noise for spermlike waveforms in Figure 6.10(a).

Fluctuations follow a Gaussian distribution centered around the mean IP configuration of

δ = 0, with a variance scaling linearly with separation distance d. This is a consequence

of the 1/d decay of the coupling strength |ε| and is further corroborated by the collapse

of the distributions under the rescaling δ → δ/
√
d in Figure 6.10(b) [218]. We model the

noisy phase dynamics by a stochastic Adler equation:

δ̇ = ε sin δ + χ(t), (6.10)

with 〈χ(t)〉 = 0 and 〈χ(t)χ(t′)〉 = 2Dδ(t− t′), where D is the phase diffusivity with units of

s−1. Associated with the Adler equation is a Fokker-Planck description for the probability

distribution P (δ) of the phase difference that is given by:

∂P

∂t
+

∂

∂δ
(ε sin δP ) = D

∂2P

∂δ2
. (6.11)

The steady-state solution when the advective and diffusive flux balance each other is given

by:

P (δ) =
1

2πI0(|ε|/D)
exp

(
− ε

D
cos δ

)
, (6.12)

where I0 is the modified Bessel function of order zero and we estimate D numerically

[250, 266]. The interaction potential U(δ) = − lnP (δ), which is 2π-periodic, is shown in

Figure 6.10(d) for increasing noise levels.
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Figure 6.10: (a) Gaussian distributions of the fluctuations of the phase difference for
varying separation distance d. (b) Collapse of the distributions in the rescaled variable
δ/
√
d. (c) Long-time evolution of δ(t) for increasing biochemical noise Λ at a fixed separation

distance d, showing the emergence of slips. (d) Effective interaction potential U(δ) estimated
from the statistics (symbols) and compared to the Fokker-Planck prediction (lines).

When noise is weak, the filaments remain phase-locked and fluctuate around the IP

configuration, which translates into a deep potential well at δ = 0. With increasing noise,
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the potential well flattens as deviations from perfect AP synchrony become more frequent

and intense. Occasionally, accumulated noise allows the filaments to gather a complete

phase of 2π, causing them to ‘slip’ towards δ ± 2π. These slips are visible in the phase

trajectories of Figure 6.10(c) and can be interpreted as thermally assisted hops between

neighboring wells in the flattened periodic potential.
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Figure 6.11: Comparison of the measured frequency of phase slips G in s−1 to the analytical
prediction.

In the absence of frequency mismatch, slips are equally probable in ±2π, and the

stochastic Adler model predicts a hopping frequency [266]:

G =
D

4π2
|I0(|ε|/D)|−2. (6.13)

We can now compare the frequency of slips computed from the numerical estimate D of

diffusivity and the above expression. Figure 6.10 highlight this comparison. For stronger

noise-floor the error in predicting the diffusivity increases as frequent events of slip. How-

ever it is evident from Figure. 6.11 that the our simulations capture the right behavior.
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6.9 Conclusions

Using a detailed microscopic model of the flagellar axoneme that produces sponta-

neous oscillations similar to those seen in nature, we have illuminated the role of hydrody-

namic interactions and associated mechanochemical feedback in enabling synchronization

of nearby flagella and cilia. Our model predictions for various beating patterns and ori-

entations all agree with experiments and give credence to the sliding control mechanism

responsible for the spontaneous beats. While we have focused on interactions in free space,

our simulations suggest that the qualitative behavior is unaltered in presence of no-slip

walls albeit with weaker coupling strengths due to the additional viscous damping. We

were also able to reproduce experimentally observed phase slips induced by biochemical

noise. Future studies with our model will probe the role of elastic basal couplings [258],

swimming sperms that are free to adjust phase by sliding past one another [267], and

emergent dynamics in large-scale ciliary arrays [209].

This chapter 6 is primarily based on the material accepted for publication in Phys-

ical Review Letters (2019) authored by Brato Chakrabarti and David Saintillan [10]. The

dissertation author was the primary researcher and author of this paper.
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Chapter 7

Transport of semiflexible filaments in

porous media

In Chapter 3 and 4 we have focused on the dynamics of passive actin filaments

in viscous flow and how buckling instabilities can make way for non-trivial filament mor-

phologies. In the spirit of understanding the coupling between morphologies of soft-matter

and mechanics we take up another problem in this chapter concerned with transport of

semiflexible polymers in porous media.

7.1 Introduction

Transport of a dilute cloud of non-interacting particles in structured complex media

underlie a variety of important physical processes in nature. Examples range from spread-

ing of water and contaminants in porous media [268] to solute transport in biofilms [269]

and motion of engineered drugs inside tumors [270]. In these problems, typically a concen-

trated particle distribution spreads as it is transported in the tortuous geometry due to the

action of external flow, forces and molecular diffusion. For a large number of such problems
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the long-time transport process can be described by an effective hydrodynamic dispersion

tensor D that depends on the microtransport dictated by flow topologies, physio-chemical

processes and the micro-structure geometry. Theoretical description of asymptotic trans-

port coefficients forms the basis of macrotransport theory [271] that serves as the backbone

of many industrial applications ranging from filtration to the design of chromatographic

device.

Even though the macrotransport theory of point-like passive [272] and active [273]

Brownian particles in porous media is well developed, modeling transport of elongated

or deformable finite-size particles remains a challenging task due to non-trivial particle-

obstacle interactions and excluded volume effects. Probably one of the earliest examples

of this problem is in the celebrated reptation theory of de Gennes [274]. In reptation one

is concerned with the thermal motion of a long linear polymer chain past fixed obstacles

that serves as a model of entangled macromolecules in polymer melts [95]. Diffusion of

stiffer semiflexible filaments in porous media have also been shown to follow the reptation

picture, albeit with different kinetic exponents [275]. Understanding the transport of flex-

ible polymers in porous media under the application of external forces also has extensive

applications in chromatographic device designs for long chain DNA molecules. Fast and

efficient size dependent separation of DNA molecules play an important role in their map-

ping and sequencing, crucial for genomic analysis [276]. Compared to classical gel based

electrophoretic separation, modern microfluidic chromatographic devices have proven to

be much more efficient for these problems [277]. In these devices DNA molecules are trans-

ported in a 2D lattice of structured microposts under the application of an external electric

field. The DNA repetitively collides with the posts of the array, with a size-dependent col-

lision time leading to rapid separation [278]. DNA molecules’ their persistence length `p is

much smaller than their contour length L, and the dynamics is governed by a competition
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between stretching and entropic preference of a coiled state. As a result, during trans-

port, the molecules hook and unhook from the micro-posts with a dynamics similar to a

rope over pulley and conformations resembling various English alphabets which have been

studied extensively in experiments, simulations and through continuous time random walk

(CTRW) models [278–285].

Contrary to long chain polymer molecules, dynamics of semiflexible polymers with

L ∼ `p is dominated by a competition between local bending forces, line tension that

enforces inextensibility and thermal fluctuations. These lead to for a number of dynamic

buckling instabilities and lead to non-trivial filament conformations that have been well

characterized in unbounded flows [7,8]. Filament transport has also been studied in cellular

flows where buckling instability driven stretch-coil transition can lead to diffusive or sub-

diffusive transport of the center-of-mass [111,113,115]. However stiff polymer dynamics in

structured porous media has largely been overlooked and most of the studies are restricted

to the limit of reptation [275,286]. Understanding their dynamics in crowded environment

is relevant for transport of stiff biopolymers like actin and microtubules [287], movements

of micro-organisms in porous media [288] and for biological agents, with the potential to

maximize their transport through interactions with the environment [289].

In this chapter, we use direct numerical simulations to study transport of semiflex-

ible polymers modeled as fluctuating inextensible Euler elastica, past a 2D periodic lattice

of circular obstacles in presence of a streaming flow. We aim to characterize essential

features of the transport that results from coupling between deformations due to dynamic

buckling and polymer-obstacle scattering, finally leading to a long-time diffusive behavior.

This is in contrast with active filaments that have a sub-diffusive transport in disordered

media as shown recently in numerical simulations [287]. In Section 7.2 we discuss the

theoretical model for the fluctuating polymer and the scattering dynamics. In Section 7.3
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we describe three main modes of polymer transport and how they can be used to explain

asymptotic hydrodynamic dispersion. In Section 7.4 we build on our understanding of

polymer-obstacle interactions to propose a simple design of a chromatographic device that

is able to sort polymers based on their lengths. We conclude in Section 7.5.

7.2 Problem setup and methods

We study the dynamics, morphologies and long-time asymptotic transport of a di-

lute suspension of semi-flexible polymers with L ∼ `p in a doubly periodic two-dimensional

porous media under the influence of a streaming flow. The porous medium as shown in

Figure 7.2 is idealized as an infinite lattice comprised of rigid circular obstacles of diameter

a. The distance between successive pillars λ is identical in the (x, y) direction resulting

in a representative square unit cell. The ordered array is characterized by the porosity

ε = Sf/St, or ratio of the fluid area Sf of an unit cell over its net area St. Under the

application of a macroscopic pressure gradient, a flow develops in the porous media with

far-stream velocity u∞. The velocity field u(x) in the unit cell is the solution of Stokes

equation obtained numerically using the boundary integral method with an appropriate

choice of Green’s function [40,273]. Computed streamlines for two representative cases are

shown in Figure 7.1. The flow topologies are governed by the distance between obstacles

λ and the incidence angle Θ made by the streaming flow with the x-axis.

We model the polymers as fluctuating Euler-elastica with the hydrodynamics given

by the local slender body theory as described in Chapter 2. The filament length is given

by L and `p denotes the persistence length like before. In order to non-dimensionalize

the governing equation we use the diameter of the pillars a as the length scale, u∞ as the

velocity scale for the external flow, B/L2 as the scale for elastic forces,
√
L/`pB/L

2 as the

scale for Brownian forces [115] and the relaxation time of the polymer τ = 8πµL4
f/Bc as
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Figure 7.1: Streamlines inside an unit cell for two different lattice porosity and incidence
angle of the flow.

the time scale. With these choices the dimensionless governing equation is given by:

∂x(s, t)

∂t
= µ̄u(x(s, t))− Λ ·

(
xssss − (σxs)s +

√
L/`pξ

)
, (7.1)

where µ̄ = 8πµL4u∞/Bac is the familiar elastoviscous number comparing the time scale of

bending relaxation to the time scale of the characteristic shear u∞/a by the imposed flow

and serves as an effective measure of mean hydrodynamic forcing. ξ is a Gaussian random

vector with zero-mean and unit variance and Λ is the local operator of SBT (see Chapter

2). As outlined previously, the resulting dynamics depend strongly on the flow-topology

and the micro-structure geometry. This is characterized by three additional dimensionless

parameters:

L

a
, ε = 1− πa2

λ2
and Θ, (7.2)

where L/a compares the filament length to the obstacle diameter, ε is the porosity and Θ

as defined before is the direction of the streaming flow u∞ with respect to the x axis. In

order to perform a systematic study in this high dimensional parameter space we focus at

a fixed `p/L = 20 that characterizes the typical thermal fluctuations in the problem and
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Figure 7.2: Schematic of the 2D lattice and a representative unit cell.

also limit ourselves on L/a = 0.7 until our discussion on sorting of polymers in Section 7.4.

Central to the present study is the prescribed mechanism of polymer-pillar scattering. For

this, we allow the filaments to have tangential motion past the obstacles that result in a

gliding behavior. Any motions normal to the pillars are avoided by a smooth hydrodynamic

repulsion as outlined in [290] that prevents filament penetration. Details of the contact

mechanism is described in Appendix D.

7.3 Results and discussion

7.3.1 Modes of transport

With the aim of understanding long-time transport properties we first focus on

characterizing the key features of individual filament dynamics at the pore scale that

dictate the emerging behavior.

The interstitial velocity field can be approximated as a linear flow at the scale
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of the filament. This allows us to understand a few aspects of the dynamics from the

known results in unbounded shear flows [7]. Typically, in weak flows the fibers tumble

quasi-periodically with small shape fluctuations reminiscent of classical Jeffery orbits [97].

Increasing the elastoviscous number µ̄ results in C and U shaped conformation due to

buckling instabilities. However, the scattering dynamics introduce additional subtleties in

this description where now a filament can strongly deform or buckle while interacting with

an obstacle even in relatively weak flows. In the explored parameter space this results in

primarily three modes of transport as discussed below.

Figure 7.3: Typical conformations of the filaments and resulting dynamics: (a) trapping,
(b) Gliding and (c) vaulting from scattering with micro-pillars. The arrows indicate possible
direction of motion.

• Trapping: During the transport process polymers can wrap around the circular ob-

stacles as shown in Figure 7.3(a) resulting in periods of prolonged trapping. As

expected, trapping events are frequent for long polymers or with strong flows in

densely packed lattices. The filament relies fundamentally on Brownian motion for

shape fluctuations that allow it to escape a trapped mode by sliding along the ob-

stacles.

• Gliding: Irrespective of the filament length and porosity of the lattice, a polymer can

glance or slide past obstacles which is a direct consequence of the intrinsic scattering
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mechanism. In dense beds this results in a squeezing mode of transport as illustrated

in Figure 7.3(b) with the black arrows indicating allowable directions of motion. The

incidence angle Θ of the incoming flow plays an important role in the selection

between trapping and gliding. For Θ = 0 or π/2 the filaments almost always avoid

being trapped and can get locked in the squeezing mode of transport which we reveal

in the subsequent discussions.

• Vaulting: Finally below the threshold of buckling we observe Brownian vaulting of

fibers. These vaults as shown in Figure 7.3(c) are distinct from Jefferey orbits in

unbounded flows. In this mode, a filament uses its contact point with a pillar as

a hinge to slide, rotate and move forward in a fashion similar to what has been

observed during oscillations of fibers in confined micro-channels [291].

7.3.2 Probability distributions and filament trajectories

With our understanding of the three distinctive modes of transport we now proceed

to explain main features of the filament trajectories as a function of various dimensionless

numbers.

We first consider the probability distribution function of the entire polymer chain

inside a representative unit cell. The distribution is computed by averaging over all the

unit cells visited by the polymer and is subsequently normalized to unity. Figure 7.4(a)-(c)

exhibit this distribution in a dense lattice for different incidence angle Θ of the streaming

flow. We notice that for Θ = 0 and π/4 this distribution has a mirror symmetry with

respect to the flow direction. As discussed previously and also evident from Figure 7.4(a),

for Θ = 0 the filament is locked in a squeezing mode between two successive pillars of

the dense bed where it relies on gliding between the obstacles to move forward. This

is further highlighted in the Figure 7.4(d) where we plot the associated center-of-mass
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Figure 7.4: Top: (a)-(c) The panel shows the probability distribution of full polymer
conformation for different incidence angle of the streaming flow. Bottom: (d)-(e) Probability
distribution of the center-of-mass. The black circle represents the circular pillar. Parameter
values: Lf/a = 0.7, ε = 0.4546 and µ̄ = 8× 103.

(COM) distribution of the polymer. The COM distribution function peaks at the sym-

metry plane of the lattice and is vanishingly small elsewhere inside the unit cell. This

further corroborates the caged dynamics of the polymer and its inability to diffuse in the

vertical direction with the spaces between pillars acting as entropic traps [292]. Gliding

still remains the primary mode of transport for Θ = π/4, but the dynamics is not caged in

this case. Due to symmetry the filament can glide in both x-and y-directions with equal

probability resulting in a distribution shown in Figure 7.4(c) that bears resemblance to

the streamlines of the flow. Finally, we observe a transition to the trapping mode when
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the flow is at Θ = π/6. In absence of symmetry the transport results in chaotic scattering

dynamics with frequent events of trapping of polymers around the obstacles. This is evi-

dent in Figure 7.4(b) where the distribution peaks only in the vicinity of the obstacle. The

accompanying COM distribution in Figure 7.4(c) shows a peak inside the obstacle which

must correspond to frequent wrapping of polymers around pillars, a typical characteristic

of the trapping mode as shown in Figure 7.3(a). A similar alteration between gliding and

trapping can take place as a function of the flow strength µ̄. This is illustrated in Figure

7.5 where we show COM probability distribution for two different flows with Θ = π/6.

As evident from the distribution in Figure 7.5(a), in weak flow both trapping and gliding

contribute to the transport while the polymer remains predominantly trapped in strong

flows. The dominant mode of transport in this case is selected from a competition between

flow induced buckling instabilities preferring deformed conformations and sliding resulting

from filament-obstacle interactions.
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Figure 7.5: Probability distribution of polymer center-of-mass for different flow strengths.
Parameter values identical to that in Figure 7.4 with Θ = π/6.

Features of the scattering process are further revealed in Figure 7.6 where we dis-

play distributions of successive filament conformations overlaid by subtracting the instan-
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taneous COM. Figure 7.6(a) now clearly captures the caged behavior of the filament where

one can observe two dominant conformations, both resembling the rotated letter U , one

being more concave than the other. As the filament squeezes through two pillars, it oscil-

lates between these two dominant shapes in a breathing pattern. Conformations for angle

Θ = π/4 exhibit a sweeping pattern spanning an angle of π/2 that results from symmetric

gliding in the horizontal and vertical direction. The chaotic scattering process for Θ = π/6

is captured in Figure7.6(b) where we observe a zoo of conformations without any distinct

peaks, hinting at the randomness of the process.
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Figure 7.6: (a)-(c) Probability distribution of overlayed filament conformation inside an
unit cell for different incidence angle of the streaming flow. The red circle with diameter
Lf/a = 0.7, represents the allowable spread of the filament.

In order to quantitatively characterize these three distinctive dynamics we use the

Gyration tensor introduced in Chapter 3 which is defined as:

Gij(t) =
1

L

∫ L

0

[xi(s, t)− x̄i(t)] [xj(s, t)− x̄j(t)] ds, (7.3)

where x̄(t) is the COM of the filament. The angle φ between the mean filament orientation

and the flow direction is provided by the eigenvector of Gij associated with the dominant

eigenvalue [7]. Figure 7.7 shows the power-spectral density of the filament mean orien-

tation as a function of dimensionless frequency. We notice that for Θ = 0 there are two
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sharp peaks that can be mapped back to the filament breathing between two dominant

conformations in an almost time-periodic trajectory. For Θ = π/4 we observe multiple

peaks in the spectrum indicative of quasi-periodicity [216] that results from gliding of sev-

eral repeating conformations in the lattice. Finally the chaotic trajectory for Θ = π/6 is

well characterized by the absence of any peaks in the power spectrum of mean orientation.

As discussed the filament remains mostly trapped around the obstacles in this case. How-

ever, the distribution of stopping times between successive trapping events is well spread,

resulting in chaotic trajectories.
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Figure 7.7: Power spectral density of the mean orientation angle φ of the filament with the
flow as a function of dimensionless frequency. Parameter values identical to that in Figure
7.4.

7.3.3 Asymptotic transport and hydrodynamic dispersion

With the understanding of individual filament dynamics at the pore-scale we now

proceed to quantify asymptotic transport properties of the problem.
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The asymptotic dispersivity is a symmetric tensor given by:

D =
1

2
lim
t→∞

d

dt
Σ(t). (7.4)

In the above expression Σ(t) is the mean-square displacement dyadic defined as:

Σ(t) =
〈

[x̄(t)− 〈x̄(t)〉] [x̄(t)− 〈x̄(t)〉]
〉
, (7.5)

where x̄(t) is the instantaneous COM as defined previously and 〈·〉 denotes ensemble

average. We have computed Σ(t) for different setups of the present problem by averaging

over more than hundred long-time filament trajectories over thousand unit cells. We first

show the result for two representative cases in Figure 7.8 with Θ = 0 and Θ = π/6 that

allows us to relate the microtransport described in previous section to the macrotransport.

Figure 7.8(a) shows the two relevant components of the mean-squared-displacement

(MSD) as a function of time for the previously discussed case of a flow at Θ = 0. Two

interesting features stand out. First, we notice that the MSD in the y direction completely

saturates. While we also observe saturation in Σxx as indicated by the shaded regime,

it eventually grows linearly with time. The pre-asymptotic saturation in Σxx is a direct

consequence of periodic trajectories of filament discussed in previous section that results

in ballistic transport with the finite value of Σxx in the saturation regime resulting from

averaging over different initial conditions. We attribute the linear growth in MSD at

asymptotic times to shear induced dispersion that follows the classical mechanism first

proposed by Taylor [293]. The resulting diffusivity depends on the flow strength µ̄. The

complete saturation of Σyy results from the caged dynamics that restricts the filament

between two pillars preventing any transverse motion apart from molecular diffusion as seen

in Figure 7.4(d). We believe for very long times the molecular diffusion in the transverse

direction will result in a diffusive transport which is difficult to capture in our simulations.

Figure 7.8(b) shows time evolution of all the components of Σ(t) for the flow at Θ = π/6.
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In this case all the three components that specify the tensor grows linearly with t in the

asymptotic limit. The pre-asymptotic time is also shorter in this case since the filament

is able to sample the unit cell efficiently through its chaotic dynamics.
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Figure 7.8: Components of the mean squared displacement as a function of time for two
different incidence angles of the streaming flow. Parameter values identical to that in Figure
7.4.

As seen in this example, for an arbitrary incoming flow, the dispersion tensor is

non-diagonal and can be expressed as D = D1e1e1 +D2e2e2 where (D1, D2) are its eigen-

values with corresponding eigenvectors (e1, e2). In this case we quantify dispersion by the
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maximum eigenvalue Dmax = max(D1, D2) that dictates the rate of spreading of a dilute

suspension of filaments.
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Figure 7.9: (a) Variation of Dmax with Θ. with other parameters being same as as Figure
7.4. (b) Variation of Dmax with µ̄ at a fixed value of Θ = π/6 for different porosity of the
lattice.

We now discuss the variation of this dominant eigenvalue Dmax as a function of

the incidence angle and the flow-strength. Figure 7.9(a) shows the dependence of disper-

sivity with flow strength in lattices with varying porosity for a fixed incidence angle of

Θ = π/6. For large porosity (small volume fraction) the filament is transported with-
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out much hindrance and the dispersion increases monotonically with flow strength due to

shear-enhanced dispersion [271]. However, in dense lattices Dmax can be non-monotonic

with µ̄ as seen from the green curve of 7.9(a). This illustrates an additional subtlety in the

transport process: the competition between trapping and shear. Shear enhances disper-

sion but in a dense lattice it also increases the probability of trapping around obstacles.

These frequent trapping events act as entropic barriers and have the potential to hinder

asymptotic transport as seen in 7.9(a) for ε = 0.45. On the other hand for a weaker flow,

the filament alternates between the trapping, gliding and the squeezing mode to spread

more efficiently. Finally for large µ̄ the transport is dictated by shear which subsequently

leads to a monotonic growth in dispersivity.

In Figure 7.9(b) we kept µ̄ or the shear in the unit cell fixed and varied the inci-

dence angle Θ to understand its role in dispersion. The results suggest that dispersion is

maximum for Θ ≈ π/8 and is minimum for Θ = 0. This can be appreciated by the micro-

transport outlined in the previous sections. For a fixed shear, a dilute cloud is spread in

the lattice most efficiently when there are chaotic trajectories allowing fast separation of

nearby polymers. Any symmetric flow-patterns hinder dispersion due to quasi-periodic or

periodic trajectories of the filaments [294].

7.4 Chromatographic separation

We have so far analyzed different modes of polymer transport and how their dy-

namics dictate asymptotic dispersivity. We now discuss how the scattering dynamics can

be leveraged to use a 2D micro-patterned porous media as a chromatographic device that

sort filaments based on their lengths.

For an illustrative example of the main features we have considered two filaments

with L/a = 0.7 and L/a = 1.7. Assuming the two polymers have the same persistence
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length `p, the shorter filament is subjected to smaller thermal fluctuations. In a typical

microfluidic experiment the macroscopic pressure gradient sets up the flow in the porous

media which fixes the characteristic shear rate u∞/a of the problem. As a result, the

longer polymer has a larger elasto-viscous number that scales as ∼ L4.
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Figure 7.10: (a) A typical center-of-mass trajectory of two polymers of length L/a = 0.7
(blue) and L/a = 1.7 (red) over a given period of time with flow at Θ = π/3. Both the
polymers started from the marked point at t = 0. (b) Ensemble averaged x and y co-
ordinates of the COM for the two polymers for the same case. (c) Time averaged separation
of the two polymers as a function of the incidence angle. For all the simulations we had
λ = 1.2.

Figure 7.10(a) shows typical COM trajectories of the two polymers over a given

period of time, starting from the same position highlighted on the figure at t = 0. It is

evident from the Lagrangian trajectories that over the course of time the filaments separate

out quite efficiently after interacting only over 6-7 pillars. The shorter polymer (indicated

in blue) experiences a µ̄ that is below the buckling threshold [7]. As a result it slides past

the obstacles and relies on the vaulting mode discussed in Section 7.2 to get transported

without much effective hindrance. On the other hand the longer polymer is trapped around
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the obstacles and remains in a folded conformations due to buckling instabilities. Events

of wrapping around the obstacles are further corroborated by the COM trajectory passing

through the obstacles as shown in red on Figure 7.10(a). Ensemble averaged trajectories

of the COM as a function of time is shown in Figure 7.10(b) that highlights the increasing

separation of the polymers through interaction with pillars.

In order to characterize the efficiency of the separation process we define mean

separation distance as

〈d〉(T ) =
1

T

∫ T

0

|x̄1(t)− x̄2(t)|dt, (7.6)

where x̄i(t) denotes the COM co-ordinate of the ith polymer. Fiugre 7.10(c) shows the

variation of the mean separation distance as a function of the incidence angle Θ, averaged

over a dimensionless time of T = 8. Similar to the result on dispersivity shown in Figure

7.9(b), the separation 〈d〉(T ) is maximized for an incidence angle close to Θ = π/3. We

attribute this to chaotic scattering dynamics of the Lagrangian trajectories discussed pre-

viously. Consistent with our earlier discussions, symmetric flow patterns at Θ = π/2 or

Θ = π/4 also result in poor separation.

7.5 Concluding remarks

We have analyzed long time transport properties of semiflexible polymers with

L ∼ `p in structured porous media under the action of an imposed flow. In contrast

to entropic polymer molecules, dynamics in this case is dictated by trapping, sliding and

vaulting of filaments. The dominant mode of transport results from a competition between

dynamic buckling instabilities and interactions with obstacles that depend on several geo-

metric factors like the incidence angle of the streaming flow, lattice porosity and polymer

length. In the spirit of recently studied bacterial scattering in microfluidic crystals [295],

we revealed that polymer-filament interactions lead to shear induced dispersion. The clas-
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sical mechanism of Taylor dispersion [293] shear enhances diffusion. However, shear can

also lead to trapping of polymers, hindering dispersivity in some cases: a phenomenon

unique to deformable particles that bears similarities with entropic trapping.

Understanding the scattering dynamics helped us to suggest how an array of micro-

post can be used to sort polymers according to their length which has potential applications

in suspension rheology. The chromatographic design borrows similarities from determinstic

lateral displacement devices (DLD) that are classically used to sort biological cells based

on their size and deformability [296, 297]. The explored parameter space reveals how the

angle of the flow can be optimized for efficient sorting of filaments. However it remains to

be explored that how geometric shape optimization of pillars can enhance Lagrangian sep-

aration of polymers [298]. Future work will also address non-trivial role of hydrodynamic

interactions [81] that is important in semi-dilute suspension and can potentially alter the

scattering dyanmics.

This Chapter is largely based on a manuscript under preparation authored by Brato

Chakrabarti, Charles Gaillard and David Saintillan. The dissertation author was the

primary contributer for this work.
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Chapter 8

Shear dispersion in peristaltic

pumping

8.1 Introduction

In all the previous chapters we have focused on the dynamics of semiflexible poly-

mers in flows, their morphology and transport. In Chapter 7 we have outlined a problem

on polymer transport in 2D structured porous media that we idealized as an arrange-

ment of circular pillars. In this chapter we study another relatively simple but overlooked

transport problem of passive Brownian tracers in 1D periodic lattices.

Brownian tracers or solutes in a quiescent fluid disperse as a result of molecular

diffusion only. Unidirectional flows such as pipe flows, however, stretch and enhance tracer

concentration gradients, leading to an increased effective diffusivity at long times. In a

landmark paper, Taylor [293] built upon this basic picture to analyze dispersion of a so-

lute in a tube. He arrived at a cross-sectionally averaged advection-diffusion equation

for the tracer concentration with a shear-dependent diffusivity known as the dispersivity.

This effective dispersion coefficient was found to scale as Pe2, where Pe = Ua/D is the
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Péclet number of the flow expressed in terms of the mean velocity U , channel radius a and

molecular diffusivity D. Taylor’s calculations were based on strong intuition that was later

made rigorous by [299] in the so-called method of moments. In the context of transport

in a tube, Taylor’s results are applicable only once the tracers have had sufficient time to

sample all the transverse positions in the cross-section. The effective dispersivity is thus

an asymptotic result. Since the seminal models of Taylor and Aris, many other meth-

ods have been proposed to calculate the effective dispersivity that involve: asymptotic

expansions [300], Frankel and Brenner’s generalized Taylor dispersion theory [301], center-

manifold reduction [302, 303] and, more recently, a formulation based on Dirac’s bra-ket

notation [304]. All of these methods rely on a well-known asymptotic technique consist-

ing of eliminating fast modes in a problem [303] to arrive at a simpler equation for the

long-time behavior of a slow mode. The concept of a simplified cross-sectionally averaged

transport equation is appealing, since in many applications one is primarily interested in

determining asymptotic transport properties such as the mean velocity or mean square

displacement. For this reason, the theory of shear-induced dispersion has been extensively

applied to industrial problems, as well as porous media flows [305], hydrology, geophysical

flows [306] and microfluidics [307]. The transport of solutes in porous media flows was

formalized by Brenner [272], who proposed a general theory for dispersion in a spatially

periodic matrix based on the method of moments. Brenner introduced so-called ‘local’ and

‘global’ coordinates and derived consistency conditions on statistical moments to calculate

the effective dispersivity by solution of a conservation equation and quadratures over a

unit cell of the periodic lattice. This technique has since been used extensively to study

shear dispersion in porous materials [268, 308], electrophoretic [309] and pressure-driven

flows [310] in periodic and serpentine channels [311] and in periodic networks [312] in the

context of microfluidic applications. Details of many other applications and the theoret-
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ical developments have been documented in [271]. These various models come under the

purview of ‘macrotransport theory,’ which aims to derive asymptotic equations for mea-

surable long-term quantities from the governing equations of microscopic field variables.

In this chapter we make use of Brenner’s generalized Taylor dispersion theory for

porous media to study shear dispersion in peristaltic flow in a wavy channel. The flow is

driven by a periodic wave train on the walls of the channel that produces unidirectional

pumping. Peristaltic pumping is common in biological processes such as transport through

the ureter and stomach by waves of cross-sectional contractions along a flexible tube; it

has also been implemented in microfluidic settings [313]. The concept of shear disper-

sion has been used to study transport in a variety of flows with biological applications,

including: dispersion in pulsatile flows [299], flows in flexible tubes with connections to res-

piration [314] and dispersion inside blood vessels with non-Newtonian fluids [315]. Particle

transport in peristaltic pumping is a relevant biofluids problem with potential applications

in micro-pumps [316, 317]. There has been a number of numerical investigation of trans-

port in peristaltic flows involving particle simulations and Poincaré maps [317, 318] and

a recent theoretical study by [304]. However, to our best knowledge the problem has not

been studied theoretically in the spirit of macrotransport theory in periodic geometries.

In the absence of flow, the transport of Brownian tracers in periodic geometries

has been analyzed in the context of Fick-Jacobs (FJ) theory [319]. This approach models

effective diffusive dynamics of particle positions in entropic potentials [320]. Macrotrans-

port theory has been proposed as an alternative to FJ theory to understand force-driven

transport through entropic barriers [321]. Recently, [322] developed asymptotic results for

the effective dispersivity using Padé approximations in the limit of pure diffusion. The

theory and numerics developed in the present chapter capture this classical limit of pure

diffusion as a special case but also extend it to account for peristaltic pumping.
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8.2 Problem definition

8.2.1 Review of peristaltic flow

We are interested in studying dispersion using macro-transport theory in the con-

text of peristatic flow. In these flows, the flexible walls of a channel deform in a prescribed

manner which in turn creates motion in the confined fluid. It has been found that depend-

ing on the geometry and wave speed it is possible to achieve unidirectional pumping which

is also known as peristaltic pumping [323]. These flows are quite efficient for sanitary fluid

transport and has been utilized in industries. As mentioned in the introduction, peristaltic

pumping occurs in physiological processes like transport in ureter, small blood vessels and

in intestine. Taylor [237], in the process of studying swimming micro-organisms, solved

a problem of peristalsis. Most of the early experimental and asymptotic developments

in peristalsis have been reported in [324]. Using finite difference and Lagrangian simula-

tions, [325] studied peristalsis in a tube for finite wavelength and finite Reynolds number.

There has been a number of other numerical studies involving finite elements [326], curvi-

linear finite differences [327] and the boundary integral method [328]. While all the above

mentioned studies focus on Newtonian fluids, [329] have studied the effect of fluid rheology

for a second-order fluid in axisymmetric peristaltic flow.

We have looked at the flow problem under a long wavelength approximation us-

ing lubrication theory and also for finite aspect ratio channels using a boundary integral

method in the limit of Stokes flow. In this section we discuss various geometric aspects

and reference frames for the problem that are relevant for both the flow and dispersion

problem.
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Geometry and reference frames

The geometry of unbounded peristaltic flow is that of an infinitely long channel

with traveling waves on the wall. In an unbounded domain the traveling waves do not

reflect back. The half-width of such a channel from centerline is then given by:

w̃(x, t) = h

[
1 + γ sin

2π

λ
(x− ct)

]
, (8.1)

where, h is the mean height of the channel, c is the wave-speed, λ is the wavelength of

the channel and γ is a geometric parameter that controls the geometry of opening of the

channel. The above equation is for the upper wall and the lower wall is located at, −w̃(x, t).

The problem can be looked at from a fixed reference frame (known as the laboratory

frame) and denoted by (x, y). In this reference frame every point on the wall has a

transverse velocity given by ∂tw̃(x, t). However in order to solve for the hydrodynamics it

is more convenient to use a translating frame of reference (ζ, η) that moves with the wave

speed c in the ζ direction [323]. The fixed and translating reference frames are related as

follows:

ζ = x− ct, (8.2)

η = y, (8.3)

τ = t. (8.4)

In this moving reference frame the width of the channel walls do not vary with time.

However for the chosen form of wave-form, the walls move with a velocity −c in the

ζ direction. Let us denote the fluid velocity by (ũ, ṽ) in the fixed reference frame. The

transformed variables in the translating frames are related to their counterparts as follows:

u(ζ, η)→ ũ(x, y, t)− c, (8.5)

v(ζ, η)→ ṽ(x, y, t). (8.6)
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We also note that the partial derivative with respect to time is transformed according to:

∂

∂t

∣∣∣∣
x

=
∂

∂τ

∣∣∣∣
ζ

∂τ

∂t
+

∂

∂ζ

∣∣∣∣
τ

∂ζ

∂t
=

∂

∂τ
− c ∂

∂ζ
. (8.7)

We will later see that in order to solve the dispersion problem we need to find the area of

the channel enclosed by one wavelength (or an unit cell). This is readily obtained as:

A =

∫ λ

0

∫ w(ζ)

−w(ζ)

dηdζ = 2hλ. (8.8)

After this discussion on geometric aspects of peristaltic flow we briefly review the

macrotransport theory that forms the basis of our analysis for the dispersion problem.

8.2.2 Brief review of Brenner’s theory

The most general formulation for calculating dispersivity in structured, spatially

periodic porous media is provided in [272] and [271]. The Taylor-Aris dispersion theory

is restricted to unidirectional fluid motions, that is for flows where the mean velocity is

aligned with the local flow direction. However, Brenner’s formulation is not limited to

such assumptions. In this section we briefly highlight the key aspects of the formulation

and possible simplifications in the context of periodic geometry under consideration.

Consider a 2D geometry that is periodic and unbounded in the x direction (with

unit vector î) and period λ. Each period of the domain consists of what we call an unit

cell.
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Figure 8.1: (a) A cartoon of the periodic geometry and unit cell (circled) with periodicity
λ. Two consecutive cell centers w.r.t a global origin O are pointed out in the figure and
inside the cell we have a local coordinate r. We have also shown qualitatively the Lagrangian
description of dispersion where a particle cloud gets smeared out as it moves down axially.
The width or spread of the particle cloud depends on the effective dispersivity. (b) This
shows the traveling waves of persitaltic flow on channel walls. The figure on the left shows
the wavy wall in the fixed reference frame. For the dahsed curve, γ = 0.4 and for the solid
curve has γ = 0.8. The figure on the right shows a representative unit cell in the translating
frame.

Fluid flow in this domain can happen because of pressure gradients, wall motions

or through any other electro-kinetic phenomenon. In the context of the peristaltic flow

there is a slip velocity on the walls. However the discussion that follows in not restricted

to peristalsis. Any position in this geometry can now be described by a global position

vector, R, with respect to some fixed origin, O. An alternative description uses the fact
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that the cell center of an unit cell, {n} can be located by a global position vector, Rn and

points inside the cells are described through a cell-centered, local co-ordinate system, r.

Since periodicity requires, u(R) = u(R+Rn) where u is the velocity field, it follows from

this that the velocity is field is purely a function of the cell-centered local co-ordinate,

u = u(r).

The transport of tracer is described through a Fokker-Planck equation of the foll-

wing form:

∂ψ(R, t|R′)
∂t

+ ∇ · J = δ(R−R′)δ(t), (8.9)

where ψ(R, t|R′) is the probability density of finding a particle at a location, R at time,

t given that it was located at R′ at t = 0. J is the flux associated with the pdf in a fixed

reference frame and is given by

J = uψ −D∇ψ, (8.10)

where the second term is due to molecular diffusion and the first term. as Brenner men-

tioned is due to convection by flow arising from ‘piggy-back transport’. Since at any instant

the tracer is located at some point in the domain, the normalization condition requires:

∫

Ω∞

ψ d2R = 1, (8.11)

where, Ω∞ is th entire domain. As mentioned in [271] the convergence of this integral

requires sufficient fast decay of the probability density as |R−R′| → ∞. In fact one can

show that the decay of the pdf is exponential. Through the above mentioned description of

cell counters and local coordinates it follows that, ψ = ψ(Rn, r, t|R′n, r′). The translational

symmetry in the x direction of the problem allows us to write ψ = ψ (Rn −R′n, r′, t|r′).

This leads us to write the normalization condition as:

∞∑

n=−∞

∫

Ωc

ψ d2r = 1, (8.12)
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where Ωc is the domain of an unit cell. Brenner’s use of discrete summation over all

cells and quadratures over unit cells simplifies the calculations. Due to periodicity, the

consistency condition requires,

ψ(R∗n, r + λî) = ψ(Rn, r), (8.13)

where R∗n and Rn are global coordinates of two adjacent cell centers as indicated in figure.

One can also write similar consistency condition for the gradient of the pdf. Brenner’s

solution then adopts the method of moments as proposed by [299]. The details of the

derivation of the moment equations and consistency conditions are involved and interested

readers are referred to [272] and [271]. Here we briefly outline the steps to calculate

moments, their physical intepretations and introduce the so called B-field equation that

provides us the effective dispersivity.

• The local moment of order m is defined as follows:

µm(r, t|r′) =

n=∞∑

n=−∞
(Rn −R′n)mψ(Rn −R′n, r, t|r′), m ∈ Z+

0 , (8.14)

where, Z+
0 is the set of positive integer including zero. For our present problem

with periodicity only along î direction a moment of order m is a m-adic with one

representative scalar. That means:

µm = µm î⊗ î · · · ⊗ î︸ ︷︷ ︸
m−times

, (8.15)

where, ⊗ indicates direct vector product. The moments satisfy certain jump condi-

tions across the cell-faces that can be derived by demanding consistency conditions

from translational symmetry. It is also important to realize that the local moments

satisfy their own FP equation that is identical to (8.9).

• Global moments of order m are now defined by quadratures over unit cells:

Mm(t|r′) =

∫

Ωc

µmd2r. (8.16)
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Due to the inclusion of the Dirac delta function in (8.9) as a source term it follows

that M0 = 1. Asumptotic solutions to moment equations (upto order 2) lead to the

calculation of dispersivity. It is worth pointing out that when one takes moments of

any PDE it generally leads to a hirearchy that has to be solved in steps. Consistency

conditions (or jump conditions) on local moments allow one to calculate Mm through

the knowledge of lower order local moments. A pictorial representation of this can

be found in [271].

• The first step involves finding an asymptotic solution to µ0. When t � λ2/D (the

residence time) the Brownian tracer has sampled many cells. At this limit the prob-

ability of finding the tracer at any local coordinate r (irrespective of the cell number)

is given by:

µ∞0 (r) = lim
t→∞

µ0(t, r). (8.17)

Even though the tracer is performing intracellular sampling, periodicity makes it

irrelevant which cell it is in. In general µ0(t, r) involves this constant asymptotic

value and other terms that decay exponentially fast in time. Aris’s [299] analysis of

dispersion also indicated exponential decay of moments over time.

• The normalization condition on the pdf, ψ requires
∫

Ωc

µ∞0 d2r = 1. (8.18)

Associated with the asymptotic moment, µ∞0 there is an asymptotic flux, J∞0 =

u(r)µ∞0 −D∇µ∞0 (r). This flux yields the first quantity of interest namely the mean

velocity of transport. It is given by:

U ∗ =

∫

Ωc

J∞0 d2r. (8.19)

The asymptotic solution, µ∞0 (r) and its gradients are periodic in the x-direction and

satisfy no-flux boundary condition.
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• The final step involves determining the so-called B(r)-field defined in the interior of

a cell that satisfies the following advection-diffusion equation:

D∇ · (µ∞0 ∇B)− J∞0 ·∇B = µ∞0 U
∗. (8.20)

All the Brownian tracers are not located at the mean position U ∗t, and this deviation

gives rise to this B field that has dimensions of length. The B-field satisfies the no

flux boundary condition at the walls given by n̂ ·∇B = 0. The consistency condition

demands, B+λî to be a periodic vector field. This can also be formulated as a jump

condition on the field, B:

B(x = −λ)−B(x = λ) = JBK = −λî. (8.21)

The solution of B field is only determined up to an constant. The calculation of

the dispersion tensor involves only gradients of B, and as a result the undetermined

constant does not affect the solution. In this paper we are only interested in longitu-

dinal dispersion, parallel to the direction of mean transport. For the problem under

consideration the mean transport is in the x direction. For this case we can define

the longitudinal dispersivity as, d∗ = î · D · î, where D is the dispersion tensor. This

longitudinal dispersivity is given by:

d∗ = D

∫

Ωc

µ∞0 ∇B · ∇Bd2r, (8.22)

where B(r) = î ·B and D is defined earlier as the molecular diffusivity of the Brown-

ian tracer. This completes the discussion on the calculation of effective longitudinal

dispersivity.
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8.3 Hydrodynamics: long wavelength approximation

We have already discussed the geometry of traveling waves and the choice of a

translating reference frame with wave velocity, c, in the previous section. In this section

we use the classical lubrication approximation for small aspect ratio channels to obtain

the flow fields. In what follows, we have the aspect ratio of the channel h/λ = ε� 1. Our

calculation closely follows [323].

Governing equations and boundary conditions

Since time does not show up explicitly in the translating frame the governing equa-

tions for the hydrodynamics are the steady state Navier-Stokes equation along with the

continuity equation for an incompressible fluid. The boundary condition is no penetration

and no-slip. The no-slip condition requires, u(ζ, η) to have a slip velocity of −c at the wall.

So we have:

∇ · u = 0, (8.23a)

ρ

[
u
∂u

∂ζ
+ v

∂u

∂η

]
= −∂p

∂ζ
+ µ

(
∂2u

∂ζ2
+
∂2u

∂η2

)
, (8.23b)

ρ

[
u
∂v

∂ζ
+ v

∂v

∂η

]
= −∂p

∂η
+ µ

(
∂2v

∂ζ2
+
∂2v

∂η2

)
, (8.23c)

u(η = ±w) = −c; n̂ · u(η = ±w) = 0, (8.23d)

where the symbols have their usual meaning. The symmetry of the unit cells about the

centerline suggests that the axial velocity, u will be an even function of the transverse

coordinate, η while the transverse velocity, v will be an odd function. These conditions

result in:

∂ηu
∣∣
η=0

= 0 and v
∣∣
η=0

= 0. (8.24)

The use of symmetry conditions allows us to solve the problem only in half of the

207



domain. The unit normal at the top wall is given by:

n̂ =
1√

1 + w′(ζ)2

(
−w′(ζ)ζ̂ + η̂

)
. (8.25)

The no penetration condition on the top wall then provides the transverse velocity

as, v(η = w) = −cw′(ζ). We shall later use this condition to solve for the hydrodynamics

above the centerline. Often the quantity of interest in peristaltic pumping is the flow rate

or pumping rate. The flow rate in the fixed reference frame at any given location is given

by:

Q(x, t) = 2

∫ w̃

0

ũ(x, y)dy. (8.26)

On moving to the translating frame of reference with the use of transformed vari-

ables we have:

Q(x, t) = 2

∫ w

0

[u(ζ, η) + c] dη = q + 2cw̃, (8.27)

where, q is the flow rate in the translating reference frame and is independent of time [330].

Non-dimensionalization

The non-dimensionalization is identical to the classical lubrication scalings. There

are two dimensionless parameter in the problem, the aspect ratio (ε) and the Reynolds

number. The following scales were chosen for scaling the dimensional variables:

ζ ∼ λ η ∼ ελ, (8.28a)

ũ ∼ c, ṽ ∼ εc, (8.28b)

p ∼ µc

ε2λ
. (8.28c)
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These yields the following dimensionless equations and boundary conditions.

∇ · u = 0, (8.29a)

εRe

[
u
∂u

∂ζ
+ v

∂u

∂η

]
= −∂p

∂ζ
+

(
ε2
∂2u

∂ζ2
+
∂2u

∂η2

)
, (8.29b)

ε3Re

[
u
∂v

∂ζ
+ v

∂v

∂η

]
= −∂p

∂η
+

(
ε2
∂2v

∂ζ2
+ ε4

∂2v

∂η2

)
, (8.29c)

u(η = w) = −1, uη(η = 0) = 0; v(η = w) = −w′, v(η = 0) = 0. (8.29d)

where the Reynolds number is given by, Re = ρcελ/µ. The dimensionless width of the

channel reads as, w(ζ) = 1 + γ sin(2πζ). The boundary conditions of the problem were

written keeping in mind that we want to solve for the velocity field in the upper half of

the channel. We also note that with the given choices of the scales the flow rate is now

given by:

q = 2εcλ

∫ w

0

udη. (8.30)

This provides us a scale for the flow rate as, εcλ. The non-dimensional flow rate is then

simply given by:

q = 2

∫ w

0

udη. (8.31)

We have intentionally not introduced separate symbols for dimensionless variables in order

to keep our formulation concise. However from here on all the variables are dimensionless

unless specified otherwise.

Leading order solution

In order to solve the dimensionless NS equations we seek a regular perturbation

expansion in small aspect ratio (ε):

u ∼ u0 + εu1 + ε2u2 · · · (8.32)

p ∼ p0 + εp1 + ε2p2 · · · (8.33)
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We shall later see that in order to consider the problem of dispersion we only

need the leading order axial velocity field. Here we provide the leading order axial and

the transverse velocity (O(ε)) field. We plug our expansions in (8.29) and from the η

momentum equation we obtain:

∂p0

∂η
= 0 =⇒ p0 = p0(ζ). (8.34)

Since the leading order transverse velocity field is O(ε), from the ζ momentum equation

we obtain:

∂2u0

∂η2
=
dp0

dζ
. (8.35)

Using the no-slip and symmetry boundary conditions we obtain the well-known parabolic

profile of a lubrication problem [331]:

u0 = −1− 1

2

dp0

dζ

(
w2 − η2

)
. (8.36)

The above solution must yield the flow rate, q. On substituting the velocity profile in

(8.31) we can obtain an expression for the pressure gradient as follows:

dp0

dζ
= − 3

2w3
(q + 2w) . (8.37)

In peristaltic flow one can define the mean pressure gradient that acts over one

period of unit cell. This quantity is known as pressure rise (PR) [323] and is given by:

PR =

∫ 1

0

dp0

dζ
dζ. (8.38)

If there is no imposed pressure gradient then the pressure rise is identically zero due to

periodicity. This is a case of pure peristalsis where the flow takes place only due to the

imposed motion of the walls. In this present paper we are only going to consider pure

peristaltic flow in absence of pressure gradients. Under this condition the flow rate, q is

completely determined from the geometry of the walls. Setting, PR to zero we obtain:

q = −2

∫ 1

0
1/w2dζ

∫ 1

0
1/w3dζ

= −4
1− γ2

2 + γ2
, (8.39)
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where the integrals can be carried out using standard techniques of contour integration.

Substituting the expression for pressure gradient provides us the velocity profile in terms

of the flow rate and the width of the wall as:

u0 =
3

4w3
(q + 2w) (w2 − η2)− 1. (8.40)

In order to obtain the leading order transverse velocity, O(ε) we make use of the con-

tinuity equation. Using the above solution for the axial velocity and appropriate boundary

conditions from (8.29) we obtain

v0 =
w′(ζ)η

4w4

[
3q
(
w2 − η2

)
− 4η2w

]
. (8.41)

This completes the solution to the leading-order hydrodynamic problem.

8.4 Dispersion in the long wavelength approximation

8.4.1 Fokker-Planck in the translating frame

We have previously discussed how macrotransport theory describes the transport of

Brownian tracers in terms of a Fokker-Planck (FP) equation. The FP equation of interest

here is an advection-diffusion equation for the probability density of finding a Brownian

tracer inside an unit cell. For a tracer located at r = r′ at t = 0, we have:

∂ψ̃

∂t
+∇r̃ · J̃ = δ(r̃ − r̃′)δ(t), (8.42)

where, ψ̃(n, x, y, t) denotes the probability density and J̃ is the flux given by:

J̃ = ũψ̃ −D∇r̃ψ. (8.43)

In the above equations, r̃ simply the local co-ordinate specific to an unit cell with respect to

the laboratory frame. We rewrite the above equation in the translating frame of reference
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and recall the definition of (8.7) to obtain:

∂ψ

∂τ
− c∂ψ

∂ζ
+∇r · J = δ(r − r′)δ(t), (8.44)

where ψ(n, ζ, η, τ) denotes the probability density in the translating frame of reference.

Simplifying the divergence of the flux and recalling (8.5) we obtain:

∂ψ

∂τ
+ u

∂ψ

∂ζ
+ v

∂ψ

∂η
−D

(
∂2ψ

∂ζ2
+
∂2ψ

∂η2

)
= δ(r − r′)δ(t). (8.45)

We note that there is an interesting cancellation of terms that leaves us with the

familiar form of the FP equation in the translating frame of reference. This form is

amenable to the treatment of macrotransport theory for calculating effective dispersivity

[271].

8.4.2 Asymptotic moments and mean velocity of transport

In order to find asymptotic solutions (long time) to the problem, the method of

moment is used. Then the first step of macrotransport theory requires us to calculate

the intracellular field, µ∞0 (r), that describes the long term probability of finding a tracer

at a position r irrespective of the cell counter, n. This is the asymptotic solution for

the first local moment. For an incompressible fluid it can be shown that µ∞0 is always a

constant [309]. Then the normalization condition readily yields:

µ∞0 =
1

A
, (8.46)

where A is the area of the unit cell as obtained in (8.8). The asymptotic flux associated

with this moment is then given by:

J∞
0 = uµ∞0 −D∇µ∞0 . (8.47)

The no-flux boundary condition at the top walls are identically satisfied due to the

boundary conditions on the velocity field. The mean velocity with which the tracer moves
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at long time is now given by:

u∗ =

∫

Ωc

J∞0 dζdη, (8.48)

where, Ωc is the domain of an unit cell. Since the mean transport is in the −ζ̂ direction the

mean solute velocity will also be in the same direction. So we seek a solution of the form,

u∗ = U∗ζ̂. An appropriate scale for this mean transport velocity will be, λ/D. Using this

we obtain:

D

λ
U∗ =

2ελ2c

A

∫ 1

0

∫ w

0

u0dηdζ, (8.49)

where u0 is the leading order solution for the axial velocity. Recalling the definition of

flowrate (8.31) and the unit cell area (8.8) we obtain

U∗ =
qPe

2
, (8.50)

where, Pe = cλ/D is the Péclet number that measures the relative strength of advection

over diffusion.

8.4.3 Dimensionless B-field equation and boundary conditions

In order to calculate the effective dispersivity one needs to solve for the so called

B-field equation. As mentioned previously, theB field can be interpreted as the dispersion

potential. Using the previously obtained asymptotic solution for the zeroth moment we

can write:

D

A
∇2B − J∞0 · ∇B =

u∗

A
. (8.51)

TheB-field as mentioned in section 8.2.2 satisfies the no-flux boundary condition, n̂·∇B =

0 at η = ±w. We also know that the field,B+ζ is periodic. This provides a jump condition:

B(ζ = 0, η)−B(ζ = λ, η) = −λζ̂. (8.52)

We are only interested in the axial dispersion of tracers. Since the mean transport

is in the axial direction, we define the following scalar field of interest, b = B · ζ̂. We
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scale the variable, b with the length scale, λ. Using the expression for the asymptotic flux,

dimensional scales from (8.28) and the dimensionless mean transport velocity from (8.50)

we obtain

∂2b

∂η2
= ε2

[
U∗ + Pe

(
u
∂b

∂ζ
+ v

∂b

∂η

)
− ∂2b

∂ζ2

]
. (8.53)

The boundary conditions once non-dimensionalized become:

∂b

∂η
= ε2w′(ζ)

∂b

∂ζ
; η = w(ζ), (8.54a)

∂b

∂η
= −ε2w′(ζ)

∂b

∂ζ
; η = −w(ζ), (8.54b)

JbK = −1. (8.54c)

For the most general B field, the effective dispersivity can be obtained by perform-

ing the following quadrature over a unit cell:

D =

∫

Ωc

µ∞0 (∇B)† · (∇B) dζdη. (8.55)

In the context of axial dispersion and under the long wavelength approximation, with the

use of symmetry the above expression for dispersivity can be simplified to

d∗ =

∫ 1

0

∫ w

0

[
1

ε2
∂2b

∂η2
+
∂2b

∂ζ2

]
dζdη, (8.56)

where d∗ is the dimensionless axial dispersivity defined as, d∗ = ζ̂ ·D · ζ̂. A value of d∗ = 1

implies that the effective dispersivity is same as the molecular diffusivity of the Brownian

tracers.

Leading-order dispersivity

In order to find the dispersivity we need to solve the dimensionless B field equation

(8.53). We notice that the small parameter arising in the differential equation is ε2. We

seek a regular perturbation expansion of b:

b ∼ b0 + ε2b1 + · · · (8.57)
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We note that the validity of this expansion is more subtle than the hydrodynamics. In

(8.53) due to non-dimensionalization all the terms are of O(1). However for large Péclet

number the advective terms will no longer be O(1) and the appropriate condition for the

validity of the perturbation expansion becomes, ε2Pe � 1 [309, 321]. Plugging in the

expansion in (8.53), we proceed to the solution of b for the first two orders.

Solution at O(0): At zeroth order we simply have

∂2b0
∂η2

= 0, and
∂b0
∂η

= 0; at η = ±w(ζ). (8.58)

The above set of equations imply, b0 = b0(ζ). To leading order, the b-field is independent

of the transverse direction. In order to solve for this leading order field, we move on to

the next order solution.

Solution at O(ε2): Upon collecting terms of O(ε2) from (8.53) the governing

equation for b1 is obtained as

∂2b1
∂η2

= U∗ + Peu0b
′
0(ζ)− b′′0(ζ), (8.59)

where, u0 is the zeroth order solution of the hydrodynamic problem. The boundary con-

dition at this order is given by:

∂b1
∂η

= w′(x)
∂b0
∂ζ

; η = w(ζ),

∂b1
∂η

= −w′(ζ)
∂b0
∂ζ

; η = −w(ζ).

We now integrate (8.59) with respect to η over the width of the channel. Using the

above mentioned boundary conditions, the definition of the flow rate, q from (8.31) and

recalling the expression for mean transport velocity, U∗ from (8.50) we obtain:

b′′0 +

(
w′

w
− Peq

2w

)
b′0 =

qPe

2
. (8.60)
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The leading order field must also satisfy the jump condition, Jb0K = −1. This can

be re-casted in the following form [309]:

Jb0K =

∫ 1

0

db0
dζ

dζ = 〈b0〉 = −1, (8.61)

where the angled brackets indicate axial average over an unit cell as before. We now

note that (8.60) is a linear differential equation that can be easily solved using integrating

factors (IF). For the present problem, the IF is given by:

α(ζ) = exp

[∫ (
w′

w
− Peq

2w

)
dζ

]
. (8.62)

With the use of the above integrating factor, (8.60) can be integrated once to obtain:

b′0(ζ) =
qPe

2α(ζ)

∫ ζ

0

α(ζ ′)dζ ′ +
K

α(ζ)
, (8.63)

where K is an integration constant that needs to be determined. We use the modified

jump condition on b0 to determine the integration constant. Solving for K we obtain:

b′0(ζ) =
qPe

2α(ζ)

∫ ζ

0

α(ζ ′)dζ ′ −
1 + qPe

2

∫ 1

0
dζ
α(ζ)

∫ ζ
0
α(ζ ′)dζ ′

α(ζ)
∫ 1

0
1

α(ζ)dζ
. (8.64)

One can go ahead and integrate the above expression one more time to obtain the b

field. However the solution is only determined up to an constant and in order to calculate

the effective dispersivity from (8.56), we are interested in the first derivative only. Once

the above quadratures are carried out, we use the relation in (8.56) to obtain:

d∗0 =

∫ 1

0

w(ζ)b′20 (ζ)dζ, (8.65)

where d∗0 denotes the leading order effective dispersivity obtained using the zeroth order

solution of the b field. As noted in [309] the numerical quadratures become difficult for

large values of the Pe number. However one can get around this difficulty by solving (8.60)

numerically using the Matlab tool chebfun [332].
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8.4.4 Asymptotics for large and small Péclet

We have provided analytical expressions for the b-field that can be used to compute

the dispersivity. As mentioned the numerical quadratures are difficult at high Pe number.

In order to have a better understanding of the physics we now provide asymptotic results

for the two limits of large and small Pe.

Small Péclet

In the limit of small Pe the solution to b0 is a regular perturbation problem. We

may formally seek an expansion of the form:

b0 = β(0) + Peβ(1) + · · · (8.66)

The leading order differential equation then simply becomes

β
′′(0) +

w′

w
β

′(0) = 0. (8.67)

This is an exact differential and can be integrated to obtain:

β
′(0) =

K

w
. (8.68)

The boundary condition, 〈β ′(0)〉 = −1 on the above quantity yields: K = −〈1/w〉−1.

If we now substitute this in the expression for effective dispersivity we obtain

d∗0 = 〈1/w〉−1

∫ 1

0

w

w2
dx = 1. (8.69)

So to the leading order the effective dispersivity is simply due to molecular diffusion. This

should not come as a surprise since in the limit of very weak flow shear does not play much

role in dispersion. In order to find the effect of flow on this we need to go to the O(Pe)

correction. After some simplifications this leads to the following differential equation:

(
wβ

′(1)
)′

=
q

2

(
w − 〈1/w〉−1

)
. (8.70)
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As the above equation being an exact derivative, it is straightforward to integrate it and

obtain

β
′(1) =

q

2w

(∫ ζ

0

wdζ ′ − ζ〈1/w〉−1

)
+K ′/w. (8.71)

The jump condition on O(Pe) correction is simply, 〈β ′(1)〉 = 0. Using this condition one

can solve for the integration constant, K ′, as:

K ′ = −〈1/w〉−1 q

2

[∫ 1

0

1

w

∫ ζ

0

wdζ ′dζ − 〈1/w〉−1

∫ 1

0

ζ

w
dζ

]
. (8.72)

One can carry out the above integrals numerically to obtain the solution. The dispersivity

can then be calculated and is given by:

d∗0 = 1 + Pe2
〈
w
(
β

′(1)
)2 〉

+O(Pe4) (8.73)

The above expression is a reminiscent of well-known Taylor dispersion, showing the Pe2

scaling in dispersivity.

Large Péclet

In this limit we first divide (8.60) to obtain a small parameter, δ = 1/Pe for our

problem. We obtain:

δb′′0 +

(
δ
w′

w
− q

2w

)
b′0 =

q

2
, where δ = 1/Pe. (8.74)

This at first look appears to be a boundary layer problem with a boundary layer of thickness

δ [333]. However the asymptotics are simplified by a regular perturbation expansion in the

small parameter, δ and the leading order solutions do satisfy all the boundary conditions.

So we seek an expansion of the form:

b0 ∼ β(0) + δβ(1) + δ2β(2)+ · · · (8.75)

At order zero the solution simply becomes:

β
′(0) = −w. (8.76)
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Since w is a periodic function of the form, w = 1 + f(ζ) where, f(ζ) is a periodic function,

it already satisfies the jump condition, 〈β ′(0)〉 = −1.

β
′′(0) +

w′

w
β

′(0) − q

2w
β

′(1) = 0. (8.77)

On using the zeroth order solution we find:

β
′(1) = −4

q
ww′. (8.78)

Finally using the first order solution we can obtain:

β′(2) =
8

q2

(
−2ww′2 − w2w′′

)
. (8.79)

It is easy to verify that by virtue of the periodic form of the width both the first and

second-order solution naturally satisfy the boundary conditions. The dispersivity is now

given by

d∗0 = 〈w3〉+O(δ2) + · · · (8.80)

At the next order we need to evaluate the following integral:

O(δ2) :

∫ 1

0

[(
β′(1)

)2

+ +2β′(2)β′(0)

]
dζ =

4

q2
〈w4w′′〉 (8.81)

In the above calculation we have used the expressions for first and second order solution

and also used integration by parts. The final expression for dispersivity is then given by

d∗0 = 〈w3〉+
4

q2Pe2 〈w4w′′〉+O(Pe−4). (8.82)

We should point out that the large Pe asymptotics are valid when, 1� Pe� ε−2.

8.4.5 Brownian simulations

In order to validate the theory we have carried out Brownian dynamics simula-

tions with large number of particles. The Langevin equations for the present problem in

219



dimensionless form are given by:

dr

dt
= u(r) + fBr(t). (8.83)

where, fBr is the Brownian fluctuations that satisfy the fluctuation-dissipation theorem:

〈fi〉 = 0 (8.84)

〈fi(t)fj(t′)〉 = 2Dδijδ(t− t′), (8.85)

where D is the molecular diffusivity and δ(t− t′) is the Dirac’s delta function. In order to

numerically march forward in time we used an explicit Euler scheme of the form

r(n+1) = r(n) + Peu(r)∆t+
√

2∆tw(t), (8.86)

where w(t) is a Gaussian random vector with zero mean and unit variance. The no flux

condition on the walls were imposed through the method of specular reflection [334]. We

have carried out the simulations with, N = 105 particles and statistics at long time were

collected. All the particles started from an initial position of r = 0. The typical time

step for most of the simulations were, ∆t = 10−6. The first two moments of the particle

position are then given by:

m1(t) =
1

N

N∑

i=1

ζi (8.87)

m2(t) =
1

N

N∑

i=1

ζ2
i . (8.88)

Using these two moments the effective dispersivity can be calculated as follows:

d∗ =
1

2
lim
t→∞

d

dt

[
m2(t)−m2

1(t)
]
. (8.89)

A representative snapshot from Brownian simulation is shown below. We also show

the plot of mean square displacement with time and the linear fit through which effective

dispersivity was calculated.
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Figure 8.2: Snapshot of Brownian simulations for ε = 0.05, γ = 0.3 and Pe = 50.
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Figure 8.3: Mean squared displacement, σ2(t) as function of time and the linear fit from
which dispersivity. The parameters are identical to that of figure 8.2.

8.4.6 Results

We use (8.64) in conjunction with (8.65) to calculate effective dispersivity for a

range of Pe numbers and for several values of the geometric parameter, γ. For large Pe

number the numerical quadratures in (8.64) becomes challenging and we resorted to using

chebfun and solved (8.60) instead. The numerical solutions also validate the large Pe

asymptotics. The Borwnian simulations show excellent agreement with the theory and are

shown on the figure for a few representative cases.
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In order to understand the results, let us first consider the case, γ = 0, representing

a straight channel. We note that d∗ = 1 for all Pe in this case. This should not come

as a surprise since the motion of walls create only a plug flow in this limit that has no

variation in the transverse direction. A simple change of reference frame suggests this

is the case of a quiescent fluid and the diffusion is purely molecular. As γ is increased

the dispersivity at low Pe falls below unity. In the limit, Pe → 0 the process is purely

molecular and the decrease in effective diffusivity can be understood using Ficks-Jacobs

theory [319]. At a given axial position, ζ, let S(ζ) represent the entropy that measures

the number of available transverse configurations for a Brownian tracer. When γ > 0 the

narrow pores act as ‘entropic barriers’ since the number of available configurations are

reduced. The wide regions of the channel then act as ‘entropic traps’ where the Brownian

motion on average is ‘slower’ compared to a straight channel. As a combined effect, the

effective diffusivity is hindered for constricted wavy channels in this diffusive limit. With

decreasing pore opening (indicating increasing γ) the dispersivity decreases [322].
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Analytical solution
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Large Pe asymptotics
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Brownian dynamics
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Pe
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Figure 8.4: Variation of effective dispersivity with Pe calculated quadratures and its com-
parisons with Brownian simulations and large Pe asymptotics.

The scenario starts becoming different as Pe becomes greater than O(1). The

advection process starts to dominate and higher constriction results in larger dispersivity.

The velocity at the pore openings is significantly higher due to continuity, and particles

are advected rapidly to the next cell after crossing this entropic barrier. Similarly, once the

particles escape the entropic traps due to diffusion they are pushed towards the barrier and

subsequently convected due to an increasing velocity field. The gradients in the velocity

field increase as the pore opening is reduced resulting in enhanced dispersivity at high Pe.

In this context we point out, γ = 1 is a singular limit that indicates completely closed

pores and trapped Brownian particles in an unit cell.

223



8.5 Beyond small aspect ratio

8.5.1 Boundary integral for hydrodynamics

So far we have only considered the problem of dispersion using long wavelength

asymptotics. The applicability of these asymptotic results are only confined to geome-

tries having small aspect ratio. However many biological peristaltic pumping haappen

at channels with finite aspect ratio where one will need to go beyond the lubrication

approximation to solve for the fluid velocity. For different physiological flows inertia is

negligible [324]. [335] has estimated the Reynolds number in the ureter to be order unity

suggesting that the flow is completely dominated by viscous forces. With these applica-

tions in mind we generalize the hydrodynamics in the Stokes regime using a boundary

integral formulation as developed in [328]. We have discussed the boundary integral for-

mulation and fundamental solutions to the Stokes equation in Chapter 1. For consistency

we briefly review the key aspects here. The velocity of a point on the boundary of the

channel can be represented as follows: [40]:

uj(x) =
1

2πµ

∫
[Gij(x,x

′)fi(x
′)− Tijk(x,x′)ui(x′)nk] ds(x′), (8.90)

where, nk is the unit normal of the boundaries and fj = nkσkj is the traction on the

boundaries. The tensor Gij is the appropriate Green’s function for the problem and Tijk is

the stresslet associated with the Green’s functions. In the context of the present problem of

pure peristalsis, we first account for the periodicity in the ζ direction by using a periodic

form of two dimensional Stokeslet. We also note that the flow is symmetric about the

centerline and is bounded by another wall. Following [328, 336] the Green’s function

appropriate for this problem is GWP that satisfies all the above mentioned characteristics.

The above notation has been used to be consistent with [328]. The choice of an appropriate

Green’s function reduces the computation and allows us to perform the integrals over only
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one of the walls.

Through the no-slip and no-penetration boundary conditions we already know the

fluid velocities at the boundary. As shown in the (cartoon) we use N+1 collocation points

and N linear elements to approximate the top wall. In the absence of mean pressure

gradient there is no contribution from the vertical sides of the unit cell.

Figure 8.5: Collocation points for approximating the boundary.

The unknown tractions are constant along a linear element and the velocities are

assumed to vary linearly. Applying a discrete form of the boundary integral equations

(8.90) we obtain a linear system for the unknown tractions:

uj(xm) +

N∑

n=1

Bn
j (xm) =

N∑

n=1

Anij(xm)fni , (8.91)

where we have:

Anij =
1

2πµ

∫

ln

GWP
ij (xm,x

′)ds(x′), (8.92a)

Bn
j =

1

2πµ

∫

ln

TWP
ijk (xm,x

′)ui(x
′)nkds(x

′), (8.92b)

where ln are the linear elements used to approximate the boundary. The integrations

over each of the elements were performed using a Gauss-Legendre quadrature rule with 16

weighing points. The linear system resulting from the use of a discrete boundary integral

formulation results in a dense matrix that is solved using LU decomposition. For all the

results shown here we have used N = 256 collocation points on the boundary. Once the

tractions are calculated we can use the boundary integral equations to calculate velocity
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at any interior point in the domain. The boundary integral implementation was validated

against [328] and our asymptotic calculations for small aspect ratio. The streamlines for

studied geometries are shown later.

8.5.2 Finite volume method for dispersivity

We have discussed that how the boundary integral formulation can be used to

calculate flow fields in Stokes regime for arbitrary aspect ratio channels. In order to solve

for the effective dispersivity we need to find a solution to the B-field. For large aspect

ratio we cannot use asymptotics and we need to resort to numerical techniques for solving

equation (8.53). The so called b equation has been previously solved [268] using finite-

element techniques in the context of transport in spatially periodic porous media. In this

paper we solve the hyperbolic conservation law using finite volume method (FVM).

We can use symmetry and solve the B field only in half of the domain. Apart from

the no flux condition at the walls, symmetry requires bη(η = 0) = 0. Numerically it is

more convenient to make use of the transformation b∗ = b+ ζ where b∗ is now periodic in

the ζ direction. With the use of the transformation we can now rewrite (8.53) as:

− Pe

(
∂(ub∗)
∂ζ

+
∂(vb∗)
∂η

)
+

(
∂2b∗

∂ζ2
+
∂2b∗

∂η2

)
+

(
1

ε2
− 1

)
∂2b∗

∂η2
= U∗ − Peu. (8.93)

An additional source term −Peu arises in the problem due to the transformation of vari-

ables. The diffusion term was split to facilitate the formulation. Here, ε is the aspect

ratio and can take any values in principle. In order to solve the above equation we use a

coordinate transformation that maps the physical domain to a square where computations

are carried out. The computational co-ordinates are obtained as:

x̄ = ζ, (8.94a)

ȳ =
1

w(ζ)
η, (8.94b)
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Figure 8.6: Mapping between physical and computational domain.

where, w(ζ) is the width of the channel at a given location. The partial derivatives are

related through the Jacobian matrix and are given by:




∂
∂ζ

∂
∂η




=
1

w




w −w′ȳ

0 1




︸ ︷︷ ︸
≡Γ




∂
∂x̄

∂
∂ȳ



, (8.95)

where the Jacobian of the transformation is J = w(ζ) and the 2× 2 matrix is denoted by

Γ. In order to proceed with FVM we integrate (8.93) over the square cells with sides ∆.

The coordinate transformation results in additional non-orthogonal terms that were dealt

using an implicit formulation [337].

The no-flux boundary condition on the top wall reads n̂ · ∇b = 0. Making use of

the transformed derivatives from (8.95) we obtain:

∂b∗

∂ȳ
= ε2

(
w(x̄)w′(x̄)

ε2w′(x̄)2 + 1

)(
∂b∗

∂x̄
− 1

)

︸ ︷︷ ︸
Φ(x̄)

at ȳ = 1. (8.96)

This boundary condition is treated using an iterative method which is discussed in the

subsequent section. The discretized form of equation results in a sparse linear system
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which needs to be solved with the following boundary conditions:

∂b∗

∂ȳ
= Φ(x̄), at, ȳ = 1, (8.97a)

∂b∗

∂ȳ
= 0, at, ȳ = 0, (8.97b)

b∗(x̄ = 0, ȳ) = b∗(x̄ = 1, ȳ), (8.97c)

where the last two conditions are attributed to symmetry and periodicity respectively. We

now point out that the quadrature for effective dispersivity is modified in the transformed

coordinates and also due to the use of b∗. We now have:

d∗ =
1

A

∫ 1

0

∫ 1

0

[
1

ε2w2

(
∂b∗

∂ȳ

)2

+

(
∂b∗

∂x̄
− ȳw

′

w

∂b∗

∂ȳ
− 1

)2
]
w dx̄dȳ, (8.98)

where A is the area of the unit cell and from periodicity it is simply given by, ε.

8.5.3 Numerical method and validation

The discretized equations from the FVM formulation results in a linear system of the

form, Ab∗ = f , where A is a sparse matrix with 9 nonzero diagonals. In order to evaluate

the advection terms the boundary integral equations were solved and pre-tabulated on a

grid. For points outside the tabulated grid a linear interpolation was carried out. This

saves computational cost in constructing the matrix A.

The boundary conditions of the problem results in a singular matrix. This should

not come as a surprise since we are only interested in the gradient of b∗. Solvability

criterion for these set of problems demand the so called Dirchlet compatibility of zero

mean of f . It is important to obtain regularized solution of the problem, since we are

interested in the gradient of the b∗ field. Heuristic pinning of the unknown at any point in

the domain often results in non-smooth solutions [338]. In this problem, following [310], we

impose the constraint of zero mean for b∗ through a Lagrange multiplier. This constraint
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does not affect the dispersion problem. The modified linear system reads as:



A e

eT 0







b∗

ω




=




f∗

0



, (8.99)

where, e = [1; 1 · · · ; 1] and ω is the Lagrange multiplier enforcing zero mean.

The no-flux boundary condition on the top wall is satisfied iteratively using the

method of ‘deferred correction’ introduced in [339]. This uses solutions from previous iter-

ations to calculate Φ(x̄) and update the source terms resulting from boundary conditions.

The steps involved in the solution are outlined below:

• Make an initial guess for Φ(x̄). This is chosen to be zero at the start of the problem.

• Construct the linear system and solve for x(n), where n is the iteration counter.

• Update Φ(x̄) and also the right hand side of the linear system that depends on

boundary terms.

• Obtain a new solution, x(n+1).

• Check to see whether tolerance is reached: |x(n+1) − x(n)| < tol. The tolerance for

the presented simulations was set to 10−9.

Typically the solutions took between 5 to 40 iterations to converge for a typical cell

number of, M = 200. In the diffusion dominated regime for channels with large aspect

ratio, the convergence is challenging. In order to facilitate it we employed the method of

under-relaxation where the relaxation parameter was chosen to be around 0.5.

The asymptotics on dispersivity is valid in the limit, ε2Pe� 1. As a result, in order

to validate our FVM method for finite or high Pe numbers we need channels with decreasing

aspect ratios. The co-ordinate transformation in the FVM method makes the computation
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challenging particularly for small aspect ratio channels and small pore opening. On the

other hand, as the aspect ratio is decreased, the boundary integral method also needs a

high number of quadrature points and that proves to be time consuming. We have thus

compared our FVM to the asymptotics in the diffusive limit in absence of any flow. In

this limit both the results match almost exactly (see table 8.1). We have also made a

comparison up to Pe ∼ O(5) (not presented) and the results were withing 5% of each

other. For the latter we used the lubrication solution for the velocity fields in order to

calculate the advection terms in our FVM.

Table 8.1: Comparison between effective diffusivity between FVM and asymptotics in
absence of flow (Pe = 0). The aspect ratio for the FVM simulation was chosen to be,
ε = 0.05.

Pore opening (γ) FVM Asymptotics

0.1 0.9950 0.9950

0.3 0.9539 0.9539

0.5 0.8661 0.8660

0.7 0.7140 0.7141

We have used Brownian dynamics simulations as outlined in section 8.4.5 to test

our FVM for finite aspect ratio channels. The velocity field computed using boundary

integrals was pre-tabulated. Linear interpolation was then used to carry out Brownian

dynamics simulations. The performed simulations show excellent agreement with FVM

(see table 8.2) over the tested regime.
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Table 8.2: Comparison of effective dispersivity, d∗, between Brenner’s theory and Brownian
dynamics for a channel with ε = 0.7 and γ = 0.2.

Péclet number (Pe) FVM Brownian dynamics

0 0.9431 0.9214

10 0.9803 0.9844

20 1.0119 1.0199

50 1.0970 1.1690

8.6 Results and Discussion

In this section we discuss some aspects of dispersion in finite aspect ratio channel

with the help on numerical techniques outlined in previous section. It is important to

point out that the streamlines presented in this sections are all in the moving reference

frame.

8.6.1 Pure diffusion

First we consider the diffusive limit in absence of any flow (Pe = 0). In this limit

our previous discussions in terms of entropic barriers and ideas from Ficks-Jacobs theory

hold. For a given pore opening controlled by the geometric parameter γ wider channels

have smaller diffusivity. For wide channels the entropic barrier is reduced for given width

modulation. However our results suggest that the slowing down of Brownian tracers in an

entropic trap of a wide channel dominates the effect of entropic barrier.
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Table 8.3: Effect of varying geometric parameters in the pure diffusive limit.

Pore opening (γ) Aspect ratio (ε) Effective diffusivity (d∗)

0.5 0.8720

0.4 0.7 0.8090

1 0.7329

0.2 0.9431

0.6 0.7 0.6400

0.8 0.4426

On the other hand, for a given aspect ratio, ε, decreasing pore opening by increasing

γ results in lower effective dispersivity. In this case both the effect of entropic trap and

barrier are amplified. This is consistent with our previous asymptotic results.
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Figure 8.7: Representative contour plot of b∗ field for ε = 0.7 and γ = 0.4 in the diffusive
limit. Only upper half of the channel is shown.
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8.6.2 Effect of re-circulation

As the aspect ratio ε is increased re-circulation bubbles starts to appear. Existence

of these bubbles is well known in shear flow over cavities [340]. These recirculation zones

make a significant contribution in the context of dispersion. [341] studied pressure driven

Stokes flow in slowly varying periodic pores using stream-functions. On retaining higher

order terms in the asymptotics it was possible to see im-mobile regions in flow due to re-

circulations. [310] used their solution to study the associated problem on dispersion. Even

though it is possible to observe re-circulation bubbles with asymptotic approximations

the solutions are still limited to long-wavelength approximation. The boundary integral

method allows us to get around this problem.

-0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

-0.1

0

0.1

0.2

Figure 8.8: Streamlines (on left) and contour lines of b∗ field for Pe = 20. The aspect ratio
of the channel, ε = 0.7 and width modulation parameter, γ = 0.4.

Recirculation bubbles can appear in two ways: increasing aspect ratio, ε at a given

pore opening, γ, or by decreasing pore opening at a given aspect ratio. Figure 8.10 shows

the variation of effective dispersivity for different values of pore opening. Representative

streamlines for this case is shown in figure 8.9. A similar behavior in dispersivity is observed

in figure 8.12 where the aspect ratio is increased at a given pore opening.
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Figure 8.9: Same conditions as in figure 8.8 except now the width modulation parameter,
γ = 0.6. This leads to recirculation bubbles in the flow.
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Figure 8.10: Variation of the effective dispersivity, d∗ with Pe number for ε = 0.7 with
different pore openings. Recirculation bubbles exist only for γ = 0.6.
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Figure 8.11: Appearance of re-circulation bubbles for different aspect ratio at a fixed pore
opening of, γ = 0.5.

We have previously discussed the diffusion dominated low Pe behavior. The disper-

sivity curves changes its slope between Pe = 1 to Pe = 10. This change is an indication of

shear dominated effects over molecular diffusivity. It is also noticable from figure 8.11 that

the appearance of recirculation regions lead to increase in dispersivity. This may come

as a surprise initially because recirculation is like a ‘hydrodynamic trap’. However one

can appreciate the increase in dispersivity from a Lagrangian point of view. The effect

of dispersion as shown in figure 8.1 is to smear out the distribution of particle clouds.

Recirculation increases the residence time of particles in an unit cell through trapping.

However, as a result of this trapping the Lagrangian particle cloud is significantly widened

within a cell and cross-streamline migration due to diffusion becomes easily accessible.

Hence the asymptotic dispersivity is increased even though it takes more time to

reach the limit due to longer residence time [310]. The behavior of effective dispersivity

with Pe are similar to that observed by [269] where they studied dispersion problem related

to reactive solute in porous media. Similar trends in dispersivity have also been observed

by [268, 342] and [343] in the context of dispersion in porous media. For very high Pe

numbers the asymptote of dispersivity tends towards the classical Taylor dispersion limit
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of Pe2.
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Figure 8.12: Variation of the effective dispersivity, d∗ with Pe number for γ = 0.5 with
different aspect ratios. Streamlines for each of the cases are shown in figure 8.11.

8.7 Concluding remarks

In this chapter we have presented an analytical calculation of effective dispersivity

for long wavelength peristaltic pumping using Brenner’s [272] theory. We have further

extended the asymptotics for finite aspect ratio channels in the limit of Stokes flow using

the boundary integral method and finite volume techniques. Our results were also vali-

dated against Brownian dynamics simulations. [299] theory of dispersion using moments

is only applicable for unidirectional flows. The variation of channel width causes the flow

field to loose uni-directionality the effect of which can only be captured through general-

ized dispersion theory. In particular we have seen that in the diffusion dominated regime

(low Pe), the small pores act like entropy barrier and the expanding region of the chan-

nel acts as entropic trap that reduces the effective diffusivity. However at large Pe this
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effect is reversed. Channels with finite aspect ratio also create recirculation bubbles that

are not captured by lubrication approximations in long wavelength channels. We have

seen that these eddies significantly impact the effective dispersivity. In particular these

‘hydrodynamic traps’ enhance the effective dispersivity.

It is interesting to note that there is a simple connection between peristaltic flow and

‘Taylor’s swimming sheet’ [237]. Taylor’s swimming sheet attains a non-zero swimming

speed using traveling waves on its surface in contrast to peristalsis where the walls are

not allowed to drift. This similarity is well known in the literature [344, 345]. Recently

there has been a considerable interest in the study of effective diffusivity, drift and related

ideas in bacterial suspensions [346,347]. In a similar spirit it may be interesting to look at

dispersion by ciliated organisms near a wall. The present analysis can be modified slightly

to study dispersion by a swimming sheet in vicinity of a wall for which the hydrodynamics

is solved by [348]. We have carried out the leading-order asymptotics for this problem and

the results are very similar to those presented in this paper. The problem can be entitled

in good humor as ‘Taylor dispersion by Taylor’s swimming sheet’ !

This Chapter is largely based on a manuscript under preparation authored by Brato

Chakrabarti, and David Saintillan. The dissertation author was the primary contributer

for this work.
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Chapter 9

Concluding remarks and future

direction

9.1 Conclusion

In the body of work presented in this thesis we have considered a variety of problems

related to the dynamics of passive and active filaments or polymers in viscous flow. The

key theme of most of the problems has been performing detailed numerical simulations and

comparing them quantitatively with available experiments performed in collaboration. Our

simulations have been complemented with analytical solutions, asymptotic calculations,

scaling theories and simplified dynamical models that underline the physical underpinnings

of most of the observations.

In Chapter 2, we discussed various aspects of elasticity and hydrodynamics of slen-

der structures. Our discussions also provide a number of useful results on appropriate

boundary conditions that are often interpreted incorrectly [84] in the literature. We also

discuss a few unresolved issues related to dynamics of fluctuations and mechanical prop-

erties of semiflexible polymers in flows that constitute part of a ongoing work.
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Building on the tools and physics discussed in Chapter 2 we studied morphologies

of actin filaments in simple shear flow in Chapter 3. The recurring theme of this study

was to point out how competition between viscous loading, bending forces and line tension

leads to various buckling instabilities that lead to non-trivial filament morphologies. While

Brownian fluctuations induce shape perturbations that are essential for all the instabilities,

we found that the threshold and mechanism of morphological transitions are unaltered by

the presence of thermal fluctuations which only acts to smooth out sharp bifurcations. Our

discussion on rheology in the dilute limit is an ongoing work where we have highlighted that

contrary to the intuition for 2D non-Brownian filaments where buckling instabilities lead

to a clear signature in rheology, semiflexible polymers do not alter the stress significantly

due to its rotation in 3D and due to the presence of thermal fluctuations.

In Chapter 4 we highlighted another morphological transition of actin filaments in

a canonical compressional flow. We discussed how interaction and coupling of unstable

modes lead to a spontaneous symmetry breaking that makes way for 3D chiral structures.

Our simulations, backed with experiments, theory and scaling arguments, suffice to explain

a number of observations reported previously in the literature.

Chapter 5 and 6 focus on dynamics of active filaments that are driven by internal

moments generated by molecular motors. These filaments serve as a model of spontaneous

oscillations observed in eucaryotic cilia and flagella that are hairlike cellular appendages.

Using a bottom-up modeling approach that accounts for all the necessary structural details

and stochastic kinetics of molecular motors, we were able to observe a variety of beating

patterns that mimic the waveforms of cilia, Chlamydomonas and sperm flagella. In Chapter

6 we discussed how our model can be used to study the role of hydrodynamics in flagellar

synchronization, a long-standing problem that holds the key to fundamental questions

related to multicellularity. Our computations revealed that both in-phase and anti-phase
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synchrony can emerge for asymmetric beats while symmetric wave-forms go in-phase, and

elucidate the mechanism for phase slips due to biochemical noise. Model predictions

agreed with recent experiments and illuminated the crucial roles of hydrodynamics and

mechano-chemical feedback in synchronization.

Chapter 7 and 8 focused on two problems in the spirit of so called macrotransport

theory [271]. Chapter 7 discusses transport of a semiflexible filament in a 2D structured,

periodic lattice that serves as an idealization of a porous media. We highlighted how the

finite size of the polymer and its interaction with the pillars lead to non-trivial dynamics

and transport properties. We further illustrated how an understanding of such behavior

can be leveraged to design chromatographic separation device for different sizes of poly-

mers. Chapter 8 discusses transport of Brownian tracers in a 1D lattice with application to

peristaltic pumping. Our results show how channel-width modulation can create entropic

barriers and trapping that lead to interesting dispersion relations.

9.2 Ongoing work and future directions

A number of avenues and problems have opened up that can be approached based

on our work so far. We discuss a few major directions along with a few comments related

to ongoing work.

• Rheology of suspension: In Chapter 3 we discussed how morphologies of actin fil-

aments affect the rheological properties of dilute suspensions. Simulations in the

dilute limit are easy to perform and the deformations can be mapped back to stress

signatures. However it remains a challenge in experiments to observe any interesting

rheological properties for a dilute suspension [3], and one only observes signatures

like shear-thinning or normal stress differences in semi-dilute suspensions [128]. The
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rheology of semi-dilute suspension of semiflexible polymers has been largely over-

looked and remains an open problem both in terms of theory and simulations [129].

Efficient computation of long-range hydrodynamic interactions in the overlap regime

remain a challenge that needs to be tackled in any such modeling problems. While

semi-dilute suspensions exhibit shear thinning, dense suspension of flexible filaments

in shear flow can form knots and entanglements that lead to shear thickening or

gelation [349]. In such dense suspensions hydrodynamic interactions are screened

and non-local frictional contact becomes relevant. Modeling of such problems is an

exciting avenue and is relevant to understand viscoelastic properties of the cytoskele-

ton [350].

• Problems on hydrodynamic synchronization: In Chapter 6 we considered the simplest

elasto-hydrodynamic problem: the pair interaction. There are a number of problems

related to hydrodynamics and synchronization that are yet to be answered. Perhaps

the most obvious extension is to study dynamics of swimming organisms. Instead of

a clamped filament, if we have an actual sperm-head or Chlamydomonas cell body

attached to the beating filament the organism will swim. In this case the system will

be force-free and that dominant hydrodynamics is given by a dipolar field that decays

as 1/r2. The mechanism of phase synchronization in swimming organisms can be

very different from that illustrated in Chapter 6. For example, swimming sperm cells

can adjust flagellar phase by moving past each other [267,351], and Chlamydomonas

flagella can be phase locked due to the rocking motion of cell body independent of

pair interactions [261,263].

Another important problem that remains to be investigated is the interaction of

spontaneously beating filaments in large-scale ciliary arrays. Preliminary numerical

investigations suggest that one may expect to observe spontaneous symmetry break-
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ing and emergence of metachronal waves [210,252], unidirectional pumping [195,209]

and related collective behavior. The fundamental challenge is to compute efficiently

large scale hydrodynamic interactions that typically scale as O(N2) [93]. An alter-

native but attractive approach is to incorporate models of spontaneous oscillations

in continuum frameworks such as in [352] that allows one to probe oscillations in

dense bed of fibers appropriate to biology efficiently.

• Filaments in complex fluids: In all the problems considered here the filaments or

polymers are suspended in a Newtonian fluid that allows us to exploit tools such

as SBT. However much of biological fluid-structure-interaction problems hinge upon

dynamics of flexible objects in complex fluids that exhibit non-Newtonian behaviors

such as viscoelasticity. Only recently there have been theoretical attempts to study

the transport of fibers in complex cellular flows [353] or understand undulatory swim-

ming in viscoelastic fluids [354]. The fundamental theoretical difficulty in all such

problems is the necessity of evolving bulk elastic stresses via transport nonlinearities.

It remains to be probed how active filament models developed in this thesis behave

in complex fluids, a problem relevant for various swimming micro-organisms [205].
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Appendix A

Measurement of bend radius

The theoretical model discussed in 3.3.2 approximates the J shape by a straight

segment and a semi-circular arc. In this idealized configuration, the curvature is zero along

the straight segment and then constant at 1/R over a length of δs = πR. In experiments

and simulations, however, the curvature varies smoothly and must reach zero at s = L

due to the boundary conditions. A typical curvature profile from a simulation is shown in

Figure A.1. An alternative measure of the radius can also be obtained from the plateau of

the bending energy during a snaking turn as seen in Figure 3.2(c) of Chapter 3. Since the

majority of the energetic contribution comes from the sharp fold, we can get an estimate

of the radius as

R =
δs
π
≈ Bπ

2〈E〉 , (A.1)

where 〈E〉 is the average bending energy over the plateau. This measure is also plotted

against the theoretical predictions in Figure 3.9(b) and follows similar trends.
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Figure A.1: Variation of curvature κ along the filament centerline for a typical J shape
chosen from a simulation. The length marked as δs provides an estimate for the arclength
of the bent portion.

In previous work, Harasim et al. [30] provided an expression for the bend radius

that was independent of the length of the filament. For the parameter space explored in

their study, they estimated R ≈ 1µm. Our results partially agree with their finding in the

limit of long filaments and strong shear.
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Appendix B

Diatom chains and regularized

Stokeslets

In this appendix we provide the details of the non-Brownian simulations performed

at University of Tulane for helical buckling problem discussed in Chapter 4. We first

discuss the structure of the so called ‘diatom chains’ that were used to model the non-

Brownian filaments and then we outline the method of regularized Stokeslet used for the

hydrodynamics.

B.1 Fiber model as a network of springs

In the non-Brownian simulations the filaments are represented as networks of

Hookean springs of stiffness k that provide structural rigidity and bending resistance.

The springs connect all possible pairs of vertices of a hexagonal cross section and addi-

tionally link neighboring cross-sections as shown in Figure B.1. For an initially straight

fiber, the rest length of the spring connecting nodes i and j is set to ∆ij.
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We non-dimensionalize the governing equations by scaling spatial variables with L, time by the characteristic

relaxation time 8⇡µL4/B, the external flow by L✏̇, deterministic forces by the bending force scale B/L2 and Brownian

fluctuations by
p

L/`pB/L2 [4]. The dimensionless equations are given as follows:

xt = µ̄u1(x(s, t)) � ⇤[f ](s), (8)

f = xssss � (�(s)xs)s +
q

L/`p ⇣, (9)

⇣ =

r
2

�s�t
⇤�1/2 · w, (10)

where two dimensionless groups govern the dynamics: the elastoviscous number µ̄ = 8⇡µ✏̇L4/(Bc) is the ratio of the

characteristic flow time scale to the time scale for elastic relaxation of a bending mode, while L/`p compares the

filament contour length to its persistence length and measures the magnitude of thermal fluctuations. In Eq. (10) for

the evaluation of the Brownian fluctuations, �s and �t denote the dimensionless spatial and temporal discretizations,

respectively, and w is a Gaussian random vector with zero mean and unit variance. Eqs. (8)–(9) are numerically

integrated in time using an implicit-explicit time-stepping method that treats the sti↵ linear terms coming from

bending elasticity implicitly and non-linear terms explicitly [3]. At every time step, the unknown tensions are obtained

by solution of an auxillary tridiagonal linear system that can be derived from the inextensibility condition: xts ·xs = 0.

Further details of the numerical method can be found in [1, 3]. All simulations presented here were carried out

with N = 128–256 points along the filament arclength. Typical time steps for the simulations were of the order of

�t ⇠ 10�12 � 10�13.

B. Non-Brownian simulations

1. Fiber model as a network of springs

The non-Brownian simulations are based on a complementary method for the description of the filaments, which

are represented as networks of Hookean springs of sti↵ness k that provide structural rigidity and bending resistance.

The springs connect all pairs of vertices of a hexagonal cross section and additionally link neighboring cross-sections

as shown in Figure 1. For an initially straight fiber, the rest length of the spring connecting nodes i and j is set to

�ij . The elastic energy resulting from the network of springs is given by:

E =
1

2

X

i,j2springs

k

✓
`ij

�ij
� 1

◆2

�ij , (11)

where `ij is the instantaneous length of the spring. We can estimate the bending rigidity B, of a filament by bending

it to a known curvature  and equating this elastic energy to the bending energy EB = B2L/2, thus providing

B =
2E

2L
. (12)

(a) (b)

FIG. 1: Schematic of a non-Brownian filament comprised of network of Hookean springs as viewed from the side (a)

and from the end (b).
Figure B.1: Schematic of a non-Brownian filament comprised of network of Hookean
springs as viewed from the side (a) and from the end (b).

The elastic energy resulting from the network of springs is given by:

E =
1

2

∑

i,j∈springs

k

(
`ij
∆ij
− 1

)2

∆ij , (B.1)

where `ij is the instantaneous length of the spring. We can estimate the bending rigidity

B, of a filament by bending it to a known curvature κ and equating this elastic energy to

the bending energy EB = Bκ2L/2, thus providing

B =
2E

κ2L
. (B.2)

We have repeated the above procedure for a number of curvature values to estimate the

bending rigidity [117,355] and use this computed value of B to estimate the elastoviscous

number µ̄ in the non-Brownian simulations.

B.2 Method of regularized Stokeslets

As discussed in Chapter 4, the experiments were performed in rectangular hyper-

bolic channels, while Brownian simulations were carried out in a two-dimensional flow

field in absence of any walls. In an attempt to highlight the robustness of helical buckling,

we perform non-Brownian simulations in an axisymmetric channel with a circular cross-

section. In order to mimic the extensional and compressional flow of the experiment, the
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dimensionless radius ρ(z) of the channel varies along the axis as follows:

ρ(z) =





0.5 for |z| ≥ 2.5,

0.286z3 + 1.63z2 + 2.78z + 1.74 for − 2.5 < z ≤ −1.5,

0.2375 (z + 2.27)−1/2 for − 1.5 < z ≤ 0,

0.2375 (2.27− z)−1/2 for 0 < z ≤ 1.5,

−0.286z3 + 1.63z2 − 2.78z + 1.74 for 1.5 < z ≤ 2.5.

(B.3)

As we demonstrate below, this shape yields in nearly constant extensional rate along the

centerline in the central part of the channel.

We represent the fluid velocity induced by the spring forces on the fiber using the

method of regularized Stokeslets as discussed in detail in [356, 357]. By exploiting the

linearity of the Stokes equations, we solve for the tractions on the boundary and compute

the background flow inside the channel using the same method. For an axisymmetric

channel, the fluid velocity is expressed linearly in terms of the tractions on the channel

wall:

u(x) =

∫ L

0

∫ 2π

0

SδF(ρ(z) cos(θ), ρ(z) sin(θ), z) ρ(z) dθ dz , (B.4)

where Sδ is the regularized Stokeslet kernel with regularization parameter δ. F = f rnk +

f ze3 are the wall tractions, where nk = (cos(θ), sin(θ), 0). The integral in the azimuthal

direction can be evaluated exactly to obtain a formula for the radial and axial velocities:

u(x) =


U

r(x)

U z(x)


 =

∫ L

0


f

rAr(z) + f zAz(z)

f rBr(z) + f zBz(z)


 dz =

∫ L

0

RδFdz, (B.5)

where Ar, Az, Br, and Bz are comprised of complete elliptic integrals, and we approximate

Eq. (B.5) using quadrature (see [358] for more details). By using this methodology, we

are able to discretize the boundary of the tube as a curve of NT points from z = 0 to
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z = L and Nin points discretizing the inlet of the tube from r = 0 to ρ(0), which yields a

significantly reduced total system size of 2(NT +Nin)× 2(NT +Nin).

We then follow the update procedure in [359], and compute the flow induced from

the no-slip boundary conditions on the tube and the elastic dynamics of the fiber by the

following procedure:

1. Compute the forces required for the background flow induced by the shape of the

tube by solving the linear system

utarget(xi) =

NT+Nin∑

j=1

Rfjhtube,

where utarget = 0 on the tube surface and matches the parabolic flow uinflow(r) =

Umax

(
1− r2

ρ(0)2

)
e3 at the inlet, where r is the radial coordinate with respect to the

tube axis and Umax is the speed at the center of the tube. We note that this is

a dense linear system of size 2(NT + Nin) × 2(NT + Nin) that need only be solved

a single time. Once we have solved for the forces, Eq. (B.5) is used evaluate the

background flow at any required point.

2. Compute the velocity on all of the fiber nodes resulting from the spring forces using

the method of regularized Stokeslets and add the background velocity generated by

the boundary forces.

3. Update the position of the fiber by taking a forward Euler time step.

The described method produces a dimensionless strain rate of |ε̇| = 4.6 and the

velocity and strain rate profiles along the centerline are shown in Fig. B.2.
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Figure B.2: Top: the axisymmetric tube profile. Middle: the simulated axial velocity
along the centerline of the tube using the shape defined in Eq. (B.3). Bottom: strain rate ε̇
along the centerline, which is the z derivative of the velocity and is approximately constant
as desired.

B.3 Simulation parameters and computed values

We use non-dimensional parameters in the simulations and convert to physical

units using the following characteristic scales for length, time, and force: Lscale = 800µm,

Tscale = 7.149 s, and Fscale = 3.482× 10−10 N. These scales where chosen to match experi-

mental values approximately. In particular, we normalize the diameter of the experimental

channel inlet (800µm) to 1, normalize the experimental inlet velocity (111.9µm/s) to be

1, and normalize the experimental viscosity (3.89× 10−3 N s/m2) to 1.

Parameter values used in these non-Brownian simulations are summarized in Table

B.1.
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Table B.1: Simulation parameters and computed values from non-Brownian simulations.

Parameter Simulation Values Dimensional Values

Number of points on tube profile, NT 2000 2000

Number of points on tube inlet, Nin 400 400

Tube grid spacing, htube 0.005 4 µm

Tube regularization parameter, δtube 0.013 10.4 µm

Inlet speed, Umax 1 111.9 µm/s

Shear rate, ε̇ 4.64 0.65 s−1

Viscosity, µ 1 3.89× 10−3 N s/m2

Filament radius, r 1.25× 10−4 0.1 µm

Filament length, L 0.0134 – 0.143 10.7 – 114 µm

Filament discretization size, h 1.25× 10−4 0.1 µm

Filament regularization parameter, δ 2.88× 10−4 0.23 µm

Number of filament nodes, N 738 – 5550 738 – 5550

Spring constant, k 0.004 1.40× 10−12 N

Elastoviscous number, µ̄ 103 – 107 103 – 107

Bending rigidity, B 2.96× 10−10 6.60× 10−26 N m2

Time step, ∆t 1× 10−5 7.15× 10−5 s
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Appendix C

Adjoint operator of the linearized

SBT

The linear operator associated with the linear stability problem defined by local

slender body theory (SBT) is given by:

L = f(s)∂ss + µ̄s∂s − ∂ssss, s ∈ [−1/2, 1/2], (C.1)

where f(s) = µ̄(s2 − 1/4)/4, is the line tension associated with the base state of the

filament. For force-free boundary conditions the line tension f(s) vanishes at s = ±1/2.

Eigenfunctions for this operator will satisfy the boundary condition vss = vsss at s = ±1/2.

This linear operator is non-adjoint and as a result the eigenfunctions are not orthogonal

to each other. Let us denote the adjoint operator as L† and the associated eigenfunctions

as u† for which we do not know the appropriate boundary conditions. From the definition

of an adjoint operator with unit weighing function we have:

〈u†,Lv〉 = 〈L†u†, v〉. (C.2)

We now attempt to derive the functional form of the adjoint operator and the boundary

conditions on u†. To this end we start from the left-hand side of the above equation that
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given by

〈u†,Lv〉 =

∫ 1/2

−1/2

[
u†f(s)∂ssv + u†µ̄s∂sv − u†∂ssssv

]
ds. (C.3)

We now apply successive integration by parts to the above expression and have:

〈u†,Lv〉 = −
∫

d

ds
(u†f)∂svds+ µ̄u†sv

∣∣∣∣∣

1/2

−1/2

+

∫
u†svsssds,

= − d

ds
(u†f)v

∣∣∣∣∣

1/2

−1/2

+ µ̄u†sv

∣∣∣∣∣

1/2

−1/2

+

∫
d2

ds2
(u†f)vds−

∫
u†ssvssds,

= − d

ds
(u†f)v

∣∣∣∣∣

1/2

−1/2

+ µ̄u†sv

∣∣∣∣∣

1/2

−1/2

− u†ssvs
∣∣∣∣∣

1/2

−1/2

+

∫
d2

ds2
(u†f)vds+

∫
u†sssvsds.

〈u†,Lv〉 = − d

ds
(u†f)v

∣∣∣∣∣

1/2

−1/2

+ µ̄u†sv

∣∣∣∣∣

1/2

−1/2

− u†ssvs
∣∣∣∣∣

1/2

−1/2

+ u†sssv

∣∣∣∣∣

1/2

−1/2

+

∫
d2

ds2
(u†f)vds

−
∫
u†ssssvds.

(C.4)

While leading to the above equations we have used the boundary conditions on f and

v. The boundary terms in the above expression will help us determine the boundary

conditions on u†. Demanding that the boundary terms vanish, we find

u†ss = 0, at s = ±1/2, (C.5)

u†sss − µ̄
u†

4
= 0, at s = −1/2, (C.6)

u†sss + µ̄
u†

4
= 0, at s = 1/2. (C.7)

(C.8)

Finally from equation C.4 we can read off the adjoint operator as:

L† =
µ̄

4

(
s2 − 1

4

)
∂2

∂s2
+ µ̄s

∂

∂s
+
µ̄

2
− ∂4

∂s4
. (C.9)
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Appendix D

Algorithm for filament contact

In Chapter 7 we studied the transport of polymers in structured porous media.

Central to the problem was the interaction or contact of the filament with the pillar. Here

we outline the algorithm that allows for tangential motion past the obstacles and prevents

penetration. The local SBT equation can be re-arranged as follows:

∂x

∂t
+ Λ · xssss = µ̄u∞ − Λ ·

(
−(σxs)s +

√
Lf/`pξ

)
= F . (D.1)

After the above re-arrangement F now contains all the terms due to the background flow

and non-linear terms from elastic forces. For any given point on the filament x(s) we first

identify the cell center xc = (xc, yc), in which it is located. Let d denote the Euclidean

distance between x(s) and the cell center. Following [290] we define a unit vector p̂ as:

p̂ =
x(s)− xc

d
. (D.2)

For a pillar of diameter a, if d − a < ε, where ε is a cut-off distance we project the the

force F parallel and perpendicular to p̂ to define:

Fn = p̂ · F , (D.3)

Ft = (I− p̂p̂) · F . (D.4)
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The subscript n and t in the above expression stands for normal and tangential. After the

projection we keep Ft the same and alter the component Fn as follows [290]:

Fn = min

[
Fn,

(
1−

(
ε

d− a

)m)
Fn

]
, (D.5)

where m = 4. The above definition is such that if the fluid and tension forces try to

separate the filament from each other the force component is unaltered. However if the

fluid and tension forces are pushing the filament to an overlapped or penetrating state the

sign of this force is reversed. Since the tangential component is unchanged, this treatment

allows the filament to glide or wrap around the obstacles without significant numerical

difficulties. In the event of contacts we have adaptively reduced the time-step to ensure

numerical stability. For all the simulations we had ε = 5Lf × 10−3.

Figure D.1: Schematic of a polymer close to contact with a pillar and the relevant
quantities.
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helices for predicting the dynamics of natural hair,” in ACM Transactions on Graphics
(TOG), vol. 25, pp. 1180–1187, ACM, 2006.

[56] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun, “Discrete elastic
rods,” in ACM transactions on graphics (TOG), vol. 27, p. 63, ACM, 2008.

[57] “Leaves and flower of paphiopedilum orchid.” https://www.orchidya.com/team/

paphiopedilum-slipper-orchid/. Accessed: 2019-10-01.

[58] R. Levien, “The elastica: a mathematical history,” University of California, Berkeley,
Technical Report No. UCB/EECS-2008-103, 2008.

[59] I. M. Mladenov and M. Hadzhilazova, The many faces of elastica. Springer, 2017.

[60] S. S. Antman, “Nonlinear plasticity,” in Nonlinear Problems of Elasticity, pp. 603–
628, Springer, 1995.

[61] S. Lim, A. Ferent, X. S. Wang, and C. S. Peskin, “Dynamics of a closed rod with
twist and bend in fluid,” SIAM Journal on Scientific Computing, vol. 31, no. 1,
pp. 273–302, 2008.

[62] J. L. Silverberg, R. D. Noar, M. S. Packer, M. J. Harrison, C. L. Henley, I. Cohen, and
S. J. Gerbode, “3d imaging and mechanical modeling of helical buckling in medicago
truncatula plant roots,” Proceedings of the National Academy of Sciences, vol. 109,
no. 42, pp. 16794–16799, 2012.

[63] J. Coyne, “Analysis of the formation and elimination of loops in twisted cable,” IEEE
Journal of Oceanic Engineering, vol. 15, no. 2, pp. 72–83, 1990.

[64] G. Van der Heijden and J. Thompson, “Helical and localised buckling in twisted rods:
a unified analysis of the symmetric case,” Nonlinear dynamics, vol. 21, no. 1, pp. 71–
99, 2000.

[65] J. Thompson, M. Silveira, G. Van der Heijden, and M. Wiercigroch, “Helical post-
buckling of a rod in a cylinder: with applications to drill-strings,” Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 468, no. 2142,
pp. 1591–1614, 2012.

[66] J. Miller, T. Su, J. Pabon, N. Wicks, K. Bertoldi, and P. M. Reis, “Buckling of a thin
elastic rod inside a horizontal cylindrical constraint,” Extreme Mechanics Letters,
vol. 3, pp. 36–44, 2015.

[67] A. Goriely and M. Tabor, “Nonlinear dynamics of filaments. iii. instabilities of helical
rods,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, vol. 453, no. 1967, pp. 2583–2601, 1997.

259

https://www.orchidya.com/team/paphiopedilum-slipper-orchid/
https://www.orchidya.com/team/paphiopedilum-slipper-orchid/


[68] C. S. Peskin, “The immersed boundary method,” Acta numerica, vol. 11, pp. 479–517,
2002.

[69] M. Somasi, B. Khomami, N. J. Woo, J. S. Hur, and E. S. Shaqfeh, “Brownian dynamics
simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-
graining issues,” Journal of non-newtonian fluid mechanics, vol. 108, no. 1-3, pp. 227–
255, 2002.

[70] B. Delmotte, E. Climent, and F. Plouraboué, “A general formulation of bead models
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[261] V. F. Geyer, F. Jülicher, J. Howard, and B. M. Friedrich, “Cell-body rocking is a
dominant mechanism for flagellar synchronization in a swimming alga,” Proc. Natl.
Acad. Sci. USA, vol. 110, no. 45, pp. 18058–18063, 2013.

[262] R. R. Bennett and R. Golestanian, “Emergent run-and-tumble behavior in a simple
model of chlamydomonas with intrinsic noise,” Phys. Rev. Lett., vol. 110, no. 14,
p. 148102, 2013.

[263] R. R. Bennett and R. Golestanian, “Phase-dependent forcing and synchronization in
the three-sphere model of chlamydomonas,” New J. Phys., vol. 15, no. 7, p. 075028,
2013.

[264] B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, and R. Mrowka, “Phase
dynamics of coupled oscillators reconstructed from data,” Phys. Rev. E, vol. 77, no. 6,
p. 066205, 2008.

[265] Y. Kawamura and R. Tsubaki, “Phase reduction approach to elastohydrodynamic
synchronization of beating flagella,” Physical Review E, vol. 97, no. 2, p. 022212,
2018.

[266] R. L. Stratonovich, Topics in the Theory of Random Noise. CRC Press, 1967.

[267] Y. Yang, J. Elgeti, and G. Gompper, “Cooperation of sperm in two dimensions: syn-
chronization, attraction, and aggregation through hydrodynamic interactions,” Phys.
Rev. E, vol. 78, no. 6, p. 061903, 2008.

[268] D. Edwards, M. Shapiro, H. Brenner, and M. Shapira, “Dispersion of inert solutes in
spatially periodic, two-dimensional model porous media,” Transport in Porous Media,
vol. 6, no. 4, pp. 337–358, 1991.

[269] B. B. Dykaar and P. K. Kitanidis, “Macrotransport of a biologically reacting solute
through porous media,” Water Resources Research, vol. 32, no. 2, pp. 307–320, 1996.

[270] O. Felfoul, M. Mohammadi, S. Taherkhani, D. De Lanauze, Y. Z. Xu, D. Loghin,
S. Essa, S. Jancik, D. Houle, M. Lafleur, et al., “Magneto-aerotactic bacteria deliver
drug-containing nanoliposomes to tumour hypoxic regions,” Nature nanotechnology,
vol. 11, no. 11, p. 941, 2016.

[271] H. Brenner, Macrotransport processes. Elsevier, 2013.

[272] H. Brenner, “Dispersion resulting from flow through spatially periodic porous media,”
Philosophical Transactions of the Royal Society of London. Series A, Mathematical
and Physical Sciences, vol. 297, no. 1430, pp. 81–133, 1980.

274



[273] R. Alonso-Matilla, B. Chakrabarti, and D. Saintillan, “Transport and dispersion of
active particles in periodic porous media,” Physical Review Fluids, vol. 4, no. 4,
p. 043101, 2019.

[274] P.-G. de Gennes, “Reptation of a polymer chain in the presence of fixed obstacles,”
The journal of chemical physics, vol. 55, no. 2, pp. 572–579, 1971.

[275] G. Nam, A. Johner, and N.-K. Lee, “Reptation of a semiflexible polymer through
porous media,” The Journal of chemical physics, vol. 133, no. 4, p. 044908, 2010.

[276] K. D. Dorfman, S. B. King, D. W. Olson, J. D. Thomas, and D. R. Tree, “Beyond gel
electrophoresis: Microfluidic separations, fluorescence burst analysis, and dna stretch-
ing,” Chemical reviews, vol. 113, no. 4, pp. 2584–2667, 2012.

[277] H. Sambrook, “Molecular cloning: a laboratory manual. cold spring harbor, ny,” 1989.

[278] C.-F. Chou, O. Bakajin, S. W. Turner, T. A. Duke, S. S. Chan, E. C. Cox, H. G.
Craighead, and R. H. Austin, “Sorting by diffusion: An asymmetric obstacle course for
continuous molecular separation,” Proceedings of the National Academy of Sciences,
vol. 96, no. 24, pp. 13762–13765, 1999.

[279] E. M. Sevick and D. Williams, “Long-lived states in electrophoresis: Collision of a
polymer chain with two or more obstacles,” EPL (Europhysics Letters), vol. 56, no. 4,
p. 529, 2001.

[280] J. M. Kim and P. S. Doyle, “Brownian dynamics simulations of a dna molecule colliding
with a small cylindrical post,” Macromolecules, vol. 40, no. 25, pp. 9151–9163, 2007.

[281] N. P. Teclemariam, V. A. Beck, E. S. Shaqfeh, and S. J. Muller, “Dynamics of dna
polymers in post arrays: Comparison of single molecule experiments and simulations,”
Macromolecules, vol. 40, no. 10, pp. 3848–3859, 2007.

[282] J. Cho and K. D. Dorfman, “Brownian dynamics simulations of electrophoretic dna
separations in a sparse ordered post array,” Journal of Chromatography A, vol. 1217,
no. 34, pp. 5522–5528, 2010.

[283] K. D. Dorfman, “Dna electrophoresis in microfabricated devices,” Reviews of Modern
Physics, vol. 82, no. 4, p. 2903, 2010.

[284] D. W. Olson, J. Ou, M. Tian, and K. D. Dorfman, “Continuous-time random walk
models of dna electrophoresis in a post array: Part i. evaluation of existing models,”
Electrophoresis, vol. 32, no. 5, pp. 573–580, 2011.

[285] D. Kawale, G. Bouwman, S. Sachdev, P. L. Zitha, M. T. Kreutzer, W. R. Rossen, and
P. E. Boukany, “Polymer conformation during flow in porous media,” Soft matter,
vol. 13, no. 46, pp. 8745–8755, 2017.

275



[286] A. Milchev, “Single-polymer dynamics under constraints: scaling theory and computer
experiment,” Journal of Physics: Condensed Matter, vol. 23, no. 10, p. 103101, 2011.

[287] Z. Mokhtari and A. Zippelius, “Dynamics of active filaments in porous media,” arXiv
preprint arXiv:1903.03815, 2019.

[288] T. Majmudar, E. E. Keaveny, J. Zhang, and M. J. Shelley, “Experiments and theory of
undulatory locomotion in a simple structured medium,” Journal of The Royal Society
Interface, vol. 9, no. 73, pp. 1809–1823, 2012.

[289] T. Ohta and T. Ohkuma, “Deformable self-propelled particles,” Physical review let-
ters, vol. 102, no. 15, p. 154101, 2009.

[290] A. A. Evans, S. E. Spagnolie, D. Bartolo, and E. Lauga, “Elastocapillary self-folding:
buckling, wrinkling, and collapse of floating filaments,” Soft Matter, vol. 9, no. 5,
pp. 1711–1720, 2013.

[291] M. Nagel, P.-T. Brun, H. Berthet, A. Lindner, F. Gallaire, and C. Duprat, “Oscilla-
tions of confined fibres transported in microchannels,” Journal of Fluid Mechanics,
vol. 835, pp. 444–470, 2018.

[292] J. Han and H. G. Craighead, “Separation of long dna molecules in a microfabricated
entropic trap array,” Science, vol. 288, no. 5468, pp. 1026–1029, 2000.

[293] G. I. Taylor, “Dispersion of soluble matter in solvent flowing slowly through a tube,”
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences, vol. 219, no. 1137, pp. 186–203, 1953.

[294] P. Gaspard and F. Baras, “Chaotic scattering and diffusion in the lorentz gas,” Phys-
ical Review E, vol. 51, no. 6, p. 5332, 1995.

[295] A. Dehkharghani, N. Waisbord, J. Dunkel, and J. S. Guasto, “Bacterial scattering in
microfluidic crystal flows reveals giant active taylor–aris dispersion,” Proceedings of
the National Academy of Sciences, vol. 116, no. 23, pp. 11119–11124, 2019.

[296] N. M. Karabacak, P. S. Spuhler, F. Fachin, E. J. Lim, V. Pai, E. Ozkumur, J. M.
Martel, N. Kojic, K. Smith, P.-i. Chen, et al., “Microfluidic, marker-free isolation of
circulating tumor cells from blood samples,” Nature protocols, vol. 9, no. 3, p. 694,
2014.

[297] M. G. OConnell, N. B. Lu, C. A. Browne, and S. S. Datta, “Cooperative size sorting
of deformable particles in porous media,” Soft matter, vol. 15, no. 17, pp. 3620–3626,
2019.

276
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[322] M. Mangeat, T. Guérin, and D. Dean, “Geometry controlled dispersion in periodic
corrugated channels,” EPL, vol. 118, no. 4, p. 40004, 2017.

[323] T. W. Latham, Fluid motions in a peristaltic pump. PhD thesis, Massachusetts
Institute of Technology, 1966.

[324] M. Jaffrin and A. Shapiro, “Peristaltic pumping,” Annual Review of Fluid Mechanics,
vol. 3, no. 1, pp. 13–37, 1971.

[325] S. Takabatake, K. Ayukawa, and A. Mori, “Peristaltic pumping in circular cylindri-
cal tubes: a numerical study of fluid transport and its efficiency,” Journal of Fluid
Mechanics, vol. 193, pp. 267–283, 1988.

[326] P. Tong and D. Vawter, “An analysis of peristaltic pumping,” Journal of Applied
Mechanics, vol. 39, no. 4, pp. 857–862, 1972.

278



[327] T. D. Brown and T.-K. Hung, “Computational and experimental investigations of two-
dimensional nonlinear peristaltic flows,” Journal of Fluid Mechanics, vol. 83, no. 2,
pp. 249–272, 1977.

[328] C. Pozrikidis, “A study of peristaltic flow,” Journal of Fluid Mechanics, vol. 180,
pp. 515–527, 1987.

[329] A. Siddiqui and W. Schwarz, “Peristaltic flow of a second-order fluid in tubes,” Journal
of Non-Newtonian Fluid Mechanics, vol. 53, pp. 257–284, 1994.
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